
Applying Foundational Java 8 Features
to a Concurrent Program

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand how foundational Java 8

functional programming features are
applied in the ThreadJoinTest program

See github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/updated

Starting SearchStream
in thread 23 the phrase "Anon," was found at character offset 111628 in "The First Part of Henry VI"
in thread 20 the phrase "Anon," was found at character offset 30949 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 48850 in "The First Part of King Henry IV"
in thread 19 the phrase "Anon," was found at character offset 170485 in "The Tragedy of Hamlet"
in thread 20 the phrase "Anon," was found at character offset 49402 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 49640 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50003 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50140 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50464 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50486 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 51628 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 52190 in "The First Part of King Henry IV"
in thread 21 the phrase "Anon," was found at character offset 67832 in "Second Part of King Henry IV"
in thread 16 the phrase "Anon," was found at character offset 75139 in "The Comedy of Errors"
in thread 16 the phrase "Anon," was found at character offset 76511 in "The Comedy of Errors"
in thread 31 the phrase "Anon," was found at character offset 34971 in "The Tragedy of Macbeth"
in thread 40 the phrase "Anon," was found at character offset 37045 in "The Tragedy of Romeo & Juliet"
in thread 40 the phrase "Anon," was found at character offset 46837 in "The Tragedy of Romeo & Juliet"
Ending SearchStream

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/updated

3

Learning Objectives in this Lesson
• Understand how foundational Java 8

functional programming features are
applied in the ThreadJoinTest program

• Recognize the pros & cons of using
Java 8 features in this example

4

Example of Starting &
Joining Java Threads

with Java 8

5

Example of Starting & Joining Java Threads with Java 8

See github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/updated

• Use Java 8 features to start() & join() a
group of threads to search for phrases
in the works of William Shakespeare

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread ->
{ try { thread.join(); }
catch (InterruptedException e)
{ ... }});

Starting SearchStream
in thread 23 the phrase "Anon," was found at character offset 111628 in "The First Part of Henry VI"
in thread 20 the phrase "Anon," was found at character offset 30949 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 48850 in "The First Part of King Henry IV"
in thread 19 the phrase "Anon," was found at character offset 170485 in "The Tragedy of Hamlet"
in thread 20 the phrase "Anon," was found at character offset 49402 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 49640 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50003 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50140 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50464 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50486 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 51628 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 52190 in "The First Part of King Henry IV"
in thread 21 the phrase "Anon," was found at character offset 67832 in "Second Part of King Henry IV"
in thread 16 the phrase "Anon," was found at character offset 75139 in "The Comedy of Errors"
in thread 16 the phrase "Anon," was found at character offset 76511 in "The Comedy of Errors"
in thread 31 the phrase "Anon," was found at character offset 34971 in "The Tragedy of Macbeth"
in thread 40 the phrase "Anon," was found at character offset 37045 in "The Tragedy of Romeo & Juliet"
in thread 40 the phrase "Anon," was found at character offset 46837 in "The Tragedy of Romeo & Juliet"
Ending SearchStream

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/updated

6

Example of Starting & Joining Java Threads with Java 8
• This program is "embarrassingly parallel"

See en.wikipedia.org/wiki/Embarrassingly_parallel

Starting SearchStream
in thread 23 the phrase "Anon," was found at character offset 111628 in "The First Part of Henry VI"
in thread 20 the phrase "Anon," was found at character offset 30949 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 48850 in "The First Part of King Henry IV"
in thread 19 the phrase "Anon," was found at character offset 170485 in "The Tragedy of Hamlet"
in thread 20 the phrase "Anon," was found at character offset 49402 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 49640 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50003 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50140 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50464 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50486 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 51628 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 52190 in "The First Part of King Henry IV"
in thread 21 the phrase "Anon," was found at character offset 67832 in "Second Part of King Henry IV"
in thread 16 the phrase "Anon," was found at character offset 75139 in "The Comedy of Errors"
in thread 16 the phrase "Anon," was found at character offset 76511 in "The Comedy of Errors"
in thread 31 the phrase "Anon," was found at character offset 34971 in "The Tragedy of Macbeth"
in thread 40 the phrase "Anon," was found at character offset 37045 in "The Tragedy of Romeo & Juliet"
in thread 40 the phrase "Anon," was found at character offset 46837 in "The Tragedy of Romeo & Juliet"
Ending SearchStream

http://en.wikipedia.org/wiki/Embarrassingly_parallel

7

Example of Starting & Joining Java Threads with Java 8
• This program is "embarrassingly parallel"

• i.e., there are no data dependencies
between worker threads

See en.wikipedia.org/wiki/Embarrassingly_parallel

Starting SearchStream
in thread 23 the phrase "Anon," was found at character offset 111628 in "The First Part of Henry VI"
in thread 20 the phrase "Anon," was found at character offset 30949 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 48850 in "The First Part of King Henry IV"
in thread 19 the phrase "Anon," was found at character offset 170485 in "The Tragedy of Hamlet"
in thread 20 the phrase "Anon," was found at character offset 49402 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 49640 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50003 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50140 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50464 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 50486 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 51628 in "The First Part of King Henry IV"
in thread 20 the phrase "Anon," was found at character offset 52190 in "The First Part of King Henry IV"
in thread 21 the phrase "Anon," was found at character offset 67832 in "Second Part of King Henry IV"
in thread 16 the phrase "Anon," was found at character offset 75139 in "The Comedy of Errors"
in thread 16 the phrase "Anon," was found at character offset 76511 in "The Comedy of Errors"
in thread 31 the phrase "Anon," was found at character offset 34971 in "The Tragedy of Macbeth"
in thread 40 the phrase "Anon," was found at character offset 37045 in "The Tragedy of Romeo & Juliet"
in thread 40 the phrase "Anon," was found at character offset 46837 in "The Tragedy of Romeo & Juliet"
Ending SearchStream

http://en.wikipedia.org/wiki/Embarrassingly_parallel

8

• There are several foundational
Java 8 features to note

Example of Starting & Joining Java Threads with Java 8

9

• There are several foundational
Java 8 features to note, e.g.,
• Create/start worker threads via

forEach() & a method reference

Example of Starting & Joining Java Threads with Java 8
public void run() {

List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

...

forEach() & method reference

10

• There are several foundational
Java 8 features to note, e.g.,
• Create/start worker threads via

forEach() & a method reference
• Pass a method reference to a

method expecting a functional
interface

Example of Starting & Joining Java Threads with Java 8
public void run() {

List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

...

List<Thread> makeWorkerThreads
(Function<String, Void> task) {
...

}

Void processInput(String input) {
...

}

The use of a functional
interface makes it easier to

change that function is passed

11

• There are several foundational
Java 8 features to note, e.g.,
• Create/start worker threads via

forEach() & a method reference
• Pass a method reference to a

method expecting a functional
interface

• Apply a function lambda to
create the runnable processed
by a thread

Example of Starting & Joining Java Threads with Java 8
List<Thread> makeWorkerThreads
(Function<String, Void> task) {
List<Thread> workerThreads =
new ArrayList<>();

mInputList.forEach(input ->
workerThreads.add
(new Thread(()

-> task.apply(input))));

return workerThreads;
}

12

• There are several foundational
Java 8 features to note, e.g.,
• Create/start worker threads via

forEach() & a method reference
• Pass a method reference to a

method expecting a functional
interface

• Apply a function lambda to
create the runnable processed
by a thread

• Wait for worker threads to finish

Example of Starting & Joining Java Threads with Java 8

Uses forEach() & lambda expression

public void run() {
List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread -> {

... thread.join(); ...
} ...

13

Example of Starting & Joining Java Threads with Java 8

Simple form of barrier synchronization

No other Java synchronization mechanisms are needed!

• There are several foundational
Java 8 features to note, e.g.,
• Create/start worker threads via

forEach() & a method reference
• Pass a method reference to a

method expecting a functional
interface

• Apply a function lambda to
create the runnable processed
by a thread

• Wait for worker threads to finish

public void run() {
List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread -> {

... thread.join(); ...
} ...

14

Pros of the
ThreadJoinTest

Program

15

Pros of the ThreadJoinTest Program
• Using foundational Java 8 features

improves the program vis-à-vis
original Java 7 version

See github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

Starting ThreadJoinTest
in thread 9 re was found at offset 1 in string xreo
in thread 10 fa was found at offset 1 in string xfao
in thread 12 la was found at offset 1 in string xlao
in thread 13 ti was found at offset 1 in string xtiotio
in thread 11 mi was found at offset 1 in string xmiomio
in thread 11 mi was found at offset 4 in string xmiomio
in thread 13 ti was found at offset 4 in string xtiotio
in thread 14 so was found at offset 1 in string xsoosoo
in thread 14 so was found at offset 4 in string xsoosoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 15 do was found at offset 1 in string xdoo
in thread 15 do was found at offset 1 in string xdoo
Ending ThreadJoinTest

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

16

Pros of the ThreadJoinTest Program
• Using foundational Java 8 features

improves the program vis-à-vis
original Java 7 version, e.g.
• The Java 7 version has additional

syntax & traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(element);

}
...

17

Pros of the ThreadJoinTest Program
• Using foundational Java 8 features

improves the program vis-à-vis
original Java 7 version, e.g.
• The Java 7 version has additional

syntax & traditional for loops

for (int i = 0;
i < mInput.size(); ++i) {

Thread t = new Thread
(makeTask(i));

mWorkerThreads.add(t);
}
...
Runnable makeTask(int i) {
return new Runnable() {
public void run() {
String e = mInput.get(i);
processInput(element);

}
...

The Java 7 version is thus more tedious & error-prone to program..

18

Pros of the ThreadJoinTest Program
• Using foundational Java 8 features

improves the program vis-à-vis
original Java 7 version, e.g.
• The Java 7 version has additional

syntax & traditional for loops
• The Java 8 implementation is a

bit more concise & extensible
• Due to functional interfaces &

basic declarative features

public void run() {
List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

...

List<Thread> makeWorkerThreads
(Function<String, Void> task) {
...

mInputList.forEach(input ->
workerThreads.add
(new Thread(()

-> task.apply(input))));

19

Cons of the
ThreadJoinTest

Program

20

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java 8 version

Accidental complexities arise from limitations with techniques, tools, & methods

21

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java 8 version, e.g.
• Manually creating/joining threads

public void run() {
List<Thread> workerThreads =
makeWorkerThreads
(this::processInput);

workerThreads
.forEach(Thread::start);

workerThreads
.forEach(thread -> {

... thread.join(); ...
} ...

22

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java 8 version, e.g.
• Manually creating/joining threads
• Only one concurrency model

supported
• “thread-per-input” that hard-

codes the # of threads to
match the # of input strings

List<Thread> makeWorkerThreads
(Function<String, Void> task){
List<Thread> workerThreads =
new ArrayList<>();

mInputList.forEach(input ->
workerThreads.add
(new Thread(()

-> task.apply(input))));

return workerThreads;
}

23

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java 8 version, e.g.
• Manually creating/joining threads
• Only one concurrency model

supported
• Not easily extensible without

major changes to the code
• e.g., insufficiently declarative

24

Cons of the ThreadJoinTest Program
• Solving these problems requires more than the foundational Java 8 features

filter(not(this::urlCached))

collect(toList())

…

map(this::downloadImage)

flatMap(this::applyFilters)

filter(not(this::urlCached))

collect(toFuture())

…

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

Parallel Streams Completable Futures

25

End of Applying
Foundational Java 8 Features

	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Slide Number 4
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Example of Starting & Joining Java Threads with Java 8
	Slide Number 14
	Pros of the ThreadJoinTest Program
	Pros of the ThreadJoinTest Program
	Pros of the ThreadJoinTest Program
	Pros of the ThreadJoinTest Program
	Slide Number 19
	Cons of the ThreadJoinTest Program
	Cons of the ThreadJoinTest Program
	Cons of the ThreadJoinTest Program
	Cons of the ThreadJoinTest Program
	Cons of the ThreadJoinTest Program
	End of Applying �Foundational Java 8 Features

