Overview of Java 8 Foundations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

vV

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand key aspects of functional programming

Learning Objectives in this Lesson

« Understand key aspects of functional programming
» Contrasted with object-oriented programming

Abstraction
N ~ \\\

Polymorphism

We’'ll show some Java 8 code fragments that will be covered in more detail later

Learning Objectives In this Lesson

* Recognize the benefits of applying functional

programming in Java 8 (

)

Java8

Learning Objectives in this Lesson

* Recognize the benefits of applying functional
programming in Java 8

» Especially when used in conjunction
with object-oriented programming

Java

Again, we’ll show Java 8 code fragments that’ll be covered in more detall later

Overview of Functional
Programming in Java 8

30

Overview of Functional Programming in Java 8

» Functional programming has its roots
In lambda calculus

See en.wikipedia.org/wiki/Functional programming

https://en.wikipedia.org/wiki/Functional_programming

Overview of Functional Programming in Java 8

» Functional programming has its roots

in lambda calculus, e.g., @ Input X

 Computations are treated as the
evaluation of mathematical functions

! | Output f(x)
/ Function g:

The output of one function Output g(f(x))
serves as the input to the

next function etc.

Function f;

Function h:

@ Output h(g(f(x)))

See en.wikipedia.org/wiki/Functional programming#Pure functions

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions

Overview of Functional Programming in Java 8

» Functional programming has its roots

in lambda calculus, e.g., @ Input X
 Computations are treated as the

evaluation of mathematical functions

long parallelFactorial(long n) { <£:17 Output f(x)
return LongStream

Function f;

.rangeClosed(1, n) Function Q:
-parallel ()
.reduce(1, (a, b) -> a * b); Y{:]7C)utputg(f(x))
+
Function h:

@ Output h(g(f(x)))

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Overview of Functional Programming in Java 8

» Functional programming has its roots
In lambda calculus, e.g.,

« Changing state & mutable data are
discouraged/avoided

See en.wikipedia.org/wiki/Side effect (computer science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Overview of Functional Programming in Java 8

* Functional programming has its roots class Total {
In lambda calculus, e.g., public long mTotal = 1;

public void mult(long n)
{ mTotal *= n; }
e Changing state & mutable data are } /

discouraged/avoided Beware of race conditions!!!

long parallelFactorial(long n) {
Total t = new Total();
LongStream.rangeClosed(1, n)
-parallel ()
.forEach(t::mult);
return t.mTotal;

}

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Overview of Functional Programming in Java 8

* Functional programming has its roots class Total {
In lambda calculus, e.g., public long mTotal = 1;

public void mult(long n)
{ mTotal *= n; }

» Changing state & mutable data are } Pt
discouraged/avoided '
| _ SMOKEY
long parallelFactorial(long n) { L —

Total t = new Total();

LongStream.rangeClosed(1, n)
-parallel ()
.forEach(t::mult);

return t.mTotal;
1 Only you can prevent

race conditions/!

In Java you must avoid race conditions, i.e., the compiler & JVM won't save you..

Overview of Functional Programmlng In Java 8

» Functional programming has its roots
In lambda calculus, e.g.,

* Instead, the focus is on “immutable”
objects

* i.e., objects whose state cannot
change after they are constructed

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Overview of Functional Programming in Java 8

* In contrast, object-oriented programming

employs “hierarchical data abstraction” Java Iterator

LevelOrder
lterator

InOrder
lterator

PostOrder
lterator

PreOrder
lterator

See en.wikipedia.org/wiki/Object-oriented design

https://en.wikipedia.org/wiki/Object-oriented_design

Overview of Functional Programming in Java 8

 In contrast, object-oriented programming
employs “hierarchical data abstraction”, e.g.

 Components are based on stable c/ass
roles & relationships extensible via
Inheritance & dynamic binding

ExpressionTree 1

»l ComponentNode
_ I
Composite LeafNode

UnaryNode
[A]
CompositeBinary CompositeNegate
Node Node
I I

Composite Composite
AddNode SubtractNode

Composite Composite

MultiplyNode DivideNode

See en.wikipedia.org/wiki/Object-oriented programming

https://en.wikipedia.org/wiki/Object-oriented_programming

Overview of Functional Programming in Java 8

 In contrast, object-oriented programming
employs “hierarchical data abstraction”, e.g. !

Initialize

!

Prompt User

 Components are based on stable c/ass
roles & relationships extensible via
Inheritance & dynamic binding

« Rather than by functions that
correspond to algorithmic actions

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

Overview of Functional Programming in Java 38

* In contrast, object-oriented programming Tree tree = ...

employs “hierarchical data abstraction”, e.g. V'Sézﬁgv?;:g\z?'t;r =

for(lterator<Tree> iter =
tree.i1terator();
iter._hasNext();)
1ter.next()
.accept(printvisitor);

» State is encapsulated by methods
that perform imperative statements

See en.wikipedia.org/wiki/lmperative programming

https://en.wikipedia.org/wiki/Imperative_programming

Overview of Functional Programming in Java 8

* In contrast, object-oriented programming Tree tree = ...

employs “hierarchical data abstraction”, e.g. V'Sr:];ﬁgvli’g:zg\&s't;r =

for(lterator<Tree> iter =
tree.i1terator();
iter._hasNext();)
1ter.next()
.accept(printvisitor);

» State is encapsulated by methods
that perform imperative statements

* This state is often mutable

See en.wikipedia.org/wiki/lmperative programming

https://en.wikipedia.org/wiki/Imperative_programming

Combining Object-Oriented
(O0) & Functional
Programming (FP) Iin Java 8

43

Benefits of Combining OO & FP in Java 8

« Java 8’s combination of functional & object-oriented
paradigms is powerful!

imperative

Benefits of Combining OO & FP in Java 8

» Java 8’s functional features help close the gap between a program’s “domain
Intent” & its computations u - ——— —

- —_ ——

See www.toptal.com/software/declarative-programming

http://www.toptal.com/software/declarative-programming

Benefits of Combining OO & FP in Java 8

« Java 8's functional features help close the gap between a program’s “domain
Intent” & its computations, e.q.,

» Domain intent defines “what”

Socket

o

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

46

Benefits of Combining OO & FP in Java 8

« Java 8's functional features help close the gap between a program’s “domain
Intent” & its computations, e.q.,

o Computations define “how”

List<Image> images = urls
-.parallelStream()
. Filter(not(urlCached()))
-map(this: :downloadImage)
.FlatMap(this::applyFilters)
.collect(toList());

Socket

o

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

See qithub.com/douglascraigschmidt/LivelLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Benefits of Combining OO & FP in Java 8

« Java 8's functional features help close the gap between a program’s “domain
Intent” & its computations, e.q.,

List<Image> images = urls '
-.parallelStream() i%%ﬁt
. Filter(not(urlCached())) .
-map(this: :downloadImage)
. TlatMap(this::applyFilters)
.collect(toList());

Socket

= 9

-

Java 8 functional programming features connect domain intent & computations

Benefits of Combining OO & FP in Java 8

» Likewise, Java 8's object-oriented features help to structure a program’s

SOftware arCh |teCtU re << Java Class=> <= Java Class==

&ImageStream = (®Image StreamCompletableFuture

<<Java Class=>
®Image StreamParallel

<<Java Class=»

<<Java Class>> |

#mFilter @ Filter ®Image StreamSequential
<<Java Class>> ﬁ
& FilterDecorator
A
<< Java Class>>
& StreamGang<E>
<<Java Class>> <<Java Class>> <<Java Class>>

@ OutputFilterDecorator| |®GrayScaleFilter| | ® NullFilter

See en.wikipedia.org/wiki/Software architecture

https://en.wikipedia.org/wiki/Software_architecture

Benefits of Combining OO & FP in Java 8

» Likewise, Java 8's object-oriented features help to structure a program’s

software architecture, e.g.,

=<Java Class=>
®Image StreamCompletableFuture

<« Java Class=>
&ImageStream

« Common classes provide a reusable
foundation for extensibility

<<Java Class=>
®Image StreamParallel

<<Java Class=>
®Image StreamSequential

<<Java Class>>

& FilterDecorator
A

<< Java Class>>
& StreamGang<E>

<<Java Class>> <<Java Class>> <<Java Class>>
@ OutputFilterDecorator| |®GrayScaleFilter| | ® NullFilter

See www.dre.vanderbilt.edu/—schmidt/PDF/Commonality Variability.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/Commonality_Variability.pdf

Benefits of Combining OO & FP in Java 8

» Likewise, Java 8's object-oriented features help to structure a program’s

software architecture, e.qg., ——— I Tinn G |
&ImageStream (& Image StreamCompletableFuture

<<Java Class=>
®Image StreamParallel

» Subclasses extend the common classes
to create various custom solutions

<<Java Class>> |
G Filter
<<Java Class>> 1 A D
@FilterDecorator

<<Java Class==>
®Image Stream Sequential

#mFilter

<< Java Class>>
& StreamGang<E>

<<Java Class>> <<Java Class>> <<Java Class>>
(© OutputFilterDecoratorl | ® GrayScaleFilte & NullFilter

See www.dre.vanderbilt.edu/—schmidt/PDF/Commonality Variability.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/Commonality_Variability.pdf

Benefits of Combining OO & FP in Java 8

» Likewise, Java 8's object-oriented features help to structure a program’s

software architecture, e.qg., ——— I Tinn G |
&ImageStream (& Image StreamCompletableFuture

<<Java Class=>
®Image StreamParallel

<<Java Class==>
®Image Stream Sequential

* Java 8's FP features are [{ ¢ inage> images = urls

g}

most effective when used | _parallelStream()
to simplify computations -Filter(not(urlCached()))
within the context of an -mapChls=-cownloacdlinage) O smeamGang<e>

.FlatMap(this::applyFilters)

OO0 software architecture _collect(toList()):

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

Benefits of Combining OO & FP in Java 8

» Likewise, Java 8's object-oriented features help to structure a program’s

software architecture, e.qg., <o Cse> | | Tinn G |
&ImageStream (& Image StreamCompletableFuture

<<Java Class=>
®Image StreamParallel

most effective when used | _paral |e|3tream()_

to simplify computations -Filter(not(urlCached()))

within the context of an -]";?p&ihlsgﬁown'oaf'gégi) T
. - - - r

OO software architecture atilap(this: :applyFilters)

.collect(toList());
» Especially concurrent
& parallel computations

) <<Java Class== .
e Java 8's FP features are etelipaes Hirses = urls \Q Magestreams.gguem.a.|

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

End of Overview of
Java 8 Foundations

64

	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Combining Object-Oriented (OO) & Functional Programming (FP) in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	End of Overview of �Java 8 Foundations

