
Overview of Java 8 Foundations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand key aspects of functional programming

3

Learning Objectives in this Lesson
• Understand key aspects of functional programming

• Contrasted with object-oriented programming

We’ll show some Java 8 code fragments that will be covered in more detail later

4

Learning Objectives in this Lesson
• Understand key aspects of functional programming
• Recognize the benefits of applying functional

programming in Java 8

5

Learning Objectives in this Lesson
• Understand key aspects of functional programming
• Recognize the benefits of applying functional

programming in Java 8
• Especially when used in conjunction

with object-oriented programming

Again, we’ll show Java 8 code fragments that’ll be covered in more detail later

30

Overview of Functional
Programming in Java 8

31See en.wikipedia.org/wiki/Functional_programming

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus

https://en.wikipedia.org/wiki/Functional_programming

32

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
Function f:

Function g:

Function h:

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

See en.wikipedia.org/wiki/Functional_programming#Pure_functions

The output of one function
serves as the input to the

next function etc.

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions

33

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
Function f:

Function g:

Function h:

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

long parallelFactorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel()
.reduce(1, (a, b) -> a * b);

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

34

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
• Changing state & mutable data are

discouraged/avoided

See en.wikipedia.org/wiki/Side_effect_(computer_science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

35See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
• Changing state & mutable data are

discouraged/avoided
long parallelFactorial(long n) {

Total t = new Total();
LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);
return t.mTotal;

}

class Total {
public long mTotal = 1;

public void mult(long n)
{ mTotal *= n; }

}

Beware of race conditions!!!

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

36In Java you must avoid race conditions, i.e., the compiler & JVM won’t save you..

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
• Changing state & mutable data are

discouraged/avoided
long parallelFactorial(long n) {

Total t = new Total();
LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);
return t.mTotal;

}

class Total {
public long mTotal = 1;

public void mult(long n)
{ mTotal *= n; }

}

Only you can prevent
race conditions!

37See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Overview of Functional Programming in Java 8
• Functional programming has its roots

in lambda calculus, e.g.,
• Computations are treated as the

evaluation of mathematical functions
• Changing state & mutable data are

discouraged/avoided
• Instead, the focus is on “immutable”

objects
• i.e., objects whose state cannot

change after they are constructed

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

38See en.wikipedia.org/wiki/Object-oriented_design

Overview of Functional Programming in Java 8
• In contrast, object-oriented programming

employs “hierarchical data abstraction”

https://en.wikipedia.org/wiki/Object-oriented_design

39

Overview of Functional Programming in Java 8
• In contrast, object-oriented programming

employs “hierarchical data abstraction”, e.g.
• Components are based on stable class

roles & relationships extensible via
inheritance & dynamic binding

See en.wikipedia.org/wiki/Object-oriented_programming

https://en.wikipedia.org/wiki/Object-oriented_programming

40

Overview of Functional Programming in Java 8
• In contrast, object-oriented programming

employs “hierarchical data abstraction”, e.g.
• Components are based on stable class

roles & relationships extensible via
inheritance & dynamic binding
• Rather than by functions that

correspond to algorithmic actions

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

41

Overview of Functional Programming in Java 8
• In contrast, object-oriented programming

employs “hierarchical data abstraction”, e.g.
• Components are based on stable class

roles & relationships extensible via
inheritance & dynamic binding

• State is encapsulated by methods
that perform imperative statements

See en.wikipedia.org/wiki/Imperative_programming

Tree tree = ...;
Visitor printVisitor =

makeVisitor(...);

for(Iterator<Tree> iter =
tree.iterator();

iter.hasNext();)
iter.next()
.accept(printVisitor);

https://en.wikipedia.org/wiki/Imperative_programming

42

Overview of Functional Programming in Java 8
• In contrast, object-oriented programming

employs “hierarchical data abstraction”, e.g.
• Components are based on stable class

roles & relationships extensible via
inheritance & dynamic binding

• State is encapsulated by methods
that perform imperative statements
• This state is often mutable

See en.wikipedia.org/wiki/Imperative_programming

Tree tree = ...;
Visitor printVisitor =

makeVisitor(...);

for(Iterator<Tree> iter =
tree.iterator();

iter.hasNext();)
iter.next()
.accept(printVisitor);

https://en.wikipedia.org/wiki/Imperative_programming

43

Combining Object-Oriented
(OO) & Functional

Programming (FP) in Java 8

44

Benefits of Combining OO & FP in Java 8
• Java 8’s combination of functional & object-oriented

paradigms is powerful!

Java
8

e.g., C++,
Java, C#

e.g., C,
FORTRAN

e.g., ML,
Haskell e.g., Prolog

45

Benefits of Combining OO & FP in Java 8
• Java 8’s functional features help close the gap between a program’s “domain

intent” & its computations

See www.toptal.com/software/declarative-programming

http://www.toptal.com/software/declarative-programming

46

Socket

Socket

Benefits of Combining OO & FP in Java 8
• Java 8’s functional features help close the gap between a program’s “domain

intent” & its computations, e.g.,
• Domain intent defines “what”

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

47

Benefits of Combining OO & FP in Java 8
• Java 8’s functional features help close the gap between a program’s “domain

intent” & its computations, e.g.,
• Domain intent defines “what”
• Computations define “how”

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

List<Image> images = urls
.parallelStream()
.filter(not(urlCached()))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

Socket

Socket

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

48

• Java 8’s functional features help close the gap between a program’s “domain
intent” & its computations, e.g.,
• Domain intent defines “what”
• Computations define “how”

Benefits of Combining OO & FP in Java 8

Java 8 functional programming features connect domain intent & computations

List<Image> images = urls
.parallelStream()
.filter(not(urlCached()))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

Socket

Socket

49

Benefits of Combining OO & FP in Java 8
• Likewise, Java 8’s object-oriented features help to structure a program’s

software architecture

See en.wikipedia.org/wiki/Software_architecture

https://en.wikipedia.org/wiki/Software_architecture

50

Benefits of Combining OO & FP in Java 8
• Likewise, Java 8’s object-oriented features help to structure a program’s

software architecture, e.g.,
• Common classes provide a reusable

foundation for extensibility

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/Commonality_Variability.pdf

51

Benefits of Combining OO & FP in Java 8
• Likewise, Java 8’s object-oriented features help to structure a program’s

software architecture, e.g.,
• Common classes provide a reusable

foundation for extensibility
• Subclasses extend the common classes

to create various custom solutions

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/Commonality_Variability.pdf

52

Benefits of Combining OO & FP in Java 8

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

• Likewise, Java 8’s object-oriented features help to structure a program’s
software architecture, e.g.,
• Common classes provide a reusable

foundation for extensibility
• Subclasses extend the common classes

to create various custom solutions
• Java 8’s FP features are

most effective when used
to simplify computations
within the context of an
OO software architecture

List<Image> images = urls
.parallelStream()
.filter(not(urlCached()))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

53

Benefits of Combining OO & FP in Java 8

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

• Likewise, Java 8’s object-oriented features help to structure a program’s
software architecture, e.g.,
• Common classes provide a reusable

foundation for extensibility
• Subclasses extend the common classes

to create various custom solutions
• Java 8’s FP features are

most effective when used
to simplify computations
within the context of an
OO software architecture
• Especially concurrent

& parallel computations

List<Image> images = urls
.parallelStream()
.filter(not(urlCached()))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

64

End of Overview of
Java 8 Foundations

	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Overview of Functional Programming in Java 8
	Combining Object-Oriented (OO) & Functional Programming (FP) in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	Benefits of Combining OO & FP in Java 8
	End of Overview of �Java 8 Foundations

