Background on Java

Concurrency & Parallelism

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

vV

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

* Understand the meaning of concurrency =
& parallelism |
fork fork
Sub-Task; Sub-Task,
fork fork fork fork
Sub-Task; ; Sub-Task; , Sub-Task, ; Sub-Task, ,

join join join join

- e < I o
P “ — s £ s £

Learning Objectives in this Lesson

Applications
. ' =
Know the. history of Java concurrency Z AdditionallFI P
& parallelism 3
C
i Threading & Synchronization Packages
g | Java Execution Environment (e.g., JVM)
+
+
O System Libraries
O Operating System Kernel
AT .

JAVA HISTORY

Learning Objectives in this Lesson

Applications
. i =z
Know the. history of Java concurrency Z AdditionallFI P
& parallelism 3
©
i Threading & Synchronization Packages
g | Java Execution Environment (e.g., JVM)
+
+
© System Libraries
O Operating System Kernel

Hopefully, you'll already know much of this!!!

An Overview
of Concurrency

An Overview of Concurrency

» Concurrency is a form of computing where threads can run simultaneously

@ s

\

J

See en.wikipedia.org/wiki/Concurrency (computer science)

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

An Overview of Concurrency

» Concurrency is a form of computing where threads can run simultaneously
4)
new Thread(() -> / —Z

someComputations());

St =

A Java threads are units of execut/on

for instruction streams that can run
concurrently on processor cores

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

An Overview of Concurrency

» Concurrency is a form of computing where threads can run simultaneously

e Concurrency often used to offload work _
from main thread to background threads »g\ =<
\

background
threads | .«
—Z

5

\

Ul
thread

See developer.android.com/topic/performance/threads.html

https://developer.android.com/topic/performance/threads.html

An Overview of Concurrency
» Concurrency is a form of computing where threads can run simultaneously

P
éé égsend()

 Java threads interact with each other via p“t()\ \ o
shared objects and/or message passing -

\

getO — [§

kﬁg

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

An Overview of Concurrency

» Concurrency is a form of computing where threads can run simultaneously

\

« Key goal is to share resources safely &
efficiently to avoid race conditions

J

Race conditions occur when a program /! o3

adepends upon the sequence or timing rm——
of threads for it to operate properly

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

An Overview of Concurrency

» Concurrency is a form of computing where threads can run simultaneously

\

« Key goal is to share resources safely & _
efficiently to avoid race conditions ' W

This test program induces race conditions adue
to lack of synchronization between producer &
consumer threads accessing a bounded queue

Shared State

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

An Overview
of Parallelism

12

An Overview of Parallelism

» Parallelism is a form of computing that
partitions tasks into sub-tasks that can

run independently & whose partial

results are combined

Task

fork()
Sub-task; Sub-task,
fork() fork()
SUb-taSkll SUb-t&Sklz SUb-taSk21 SUb-t&Skzz
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

See en.wikipedia.org/wiki/Parallel computing

https://en.wikipedia.org/wiki/Parallel_computing

An Overview of Parallelism

» Parallelism is a form of computing that
partitions tasks into sub-tasks that can

run independently & whose partial

results are combined

« Key goal is to efficiently
(1) partition tasks into sub-
tasks & (2) combine results

Task

fork()
Sub-task; Sub-task,
fork() fork()
SUb-taSkll Sub'task12 SUb-taSk21 Sub‘taskzz
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

14

An Overview of Parallelism

» Parallelism is a form of computing that —
partitions tasks into sub-tasks that can |

run independently & whose partial fork()
results are combined Sub-task, Sub-task,
« Key goal is to efficiently fork() fork()
(1) partr“on tasks into sub- Sutl)-taskl_l Sub-ItaSk1_2 Sub—tlaskz_l Sub—tellsk2_2
tas kS & (2) Combine reSUItS Process Process Process Process
sequentially sequentially sequentially sequentially

Parallelism is a performance optimization (e.g., throughput, scalability, & latency)

An Overview of Parallelism

» Parallelism is a form of computing that
partitions tasks into sub-tasks that can T
run independently & whose partial
results are combined

Sub-task; Sub-task,

fork() fork()

SUb-taSkll

Process
sequentially

Process
sequentially

e Parallelism works best when
there’s no shared mutable
state between threads

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all. html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

An Overview of Parallelism

» Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

From Concurrent to Parallel

Jiokus

15K 4,073 views
o Addto b Share eee More g o P

See www.youtube.com/watch?v=NsDE7E8sIdQ

http://www.youtube.com/watch?v=NsDE7E8sIdQ

An Overview of Parallelism

* Brian Goetz has an excellent talk 60
about the evolution of Java from
concurrent to parallel computing 50 -

40 - ¢ Actual
- Predicted
30
&
His talk emphasizes that Java 8 20 - "
combines functional programming | ___— ®
with fine-grained data parallelism | -, o
to leverage many-core processors i
0 - 1 f , , .
2004 2006 2009 2012 2014 2017

See www.infog.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

A Brief History of
Concurrency &
Parallelism In Java

19

A Brief History of Concurrency & Parallelism in Java
» Foundational concurrency support

Applications

Additional Frameworks & Languages

Java/JNI

Threading & Synchronization Packages

e.g., Java threads &

.. . ; Java Execution Environment (e.g., JVM)
built-in monitor objects

+/C§

avallable in Java 1.0 +
© System Libraries
O Operating System Kernel

20

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support
» Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support SimpleBlockingBoundedQueue<Integer>

« Focus on basic multi-threading simpleQueue = new
& synchronization primitives SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>
Allow multiple threads (simpleQueue))
}

to communicate via a
bounded buffer

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support SimpleBlockingBoundedQueue<Integer>

« Focus on basic multi-threading simpleQueue = new
& synchronization primitives SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>
(simpleQueue)),
new Thread(new Consumer<>
(simpleQueue))
};

Start & join these for (Thread thread : threads)
RS SRS \ thread.start();

for (Thread thread : threads)
thread.join(Q);

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java

« Foundational concurrency support class SimpleBlockingBoundedQueue
 Focus on basic multi-threading <E> {

L - public E take() ...{
& synchronization primitives synchronized(this) {

while (mList.iseEmpty())
waitQ;

Built-in monitor object / notifyAll();

mutual exclusion & _
coordination primitives return mList.poll();

}
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency & Parallelism in Java

» Foundational concurrency support

 Efficient, but low-level & very
limited in capabilities

25

A Brief History of Concurrency & Parallelism in Java

Applications

Additional Frameworks & Languages

« Advanced concurrency support

Java/JNI

Threading & Synchronization Packages

e.g., Java executor fl‘élﬂ?é‘WOl’/(, | Java Execution Environment (e.g., JVM)

synchronizers, blocking queues,
atomics, & concurrent collections

C++/C

System Libraries

C

Operating System Kernel

26

A Brief History of Concurrency & Parallelism in Java

« Advanced concurrency support
» Focus on course-grained “task

parallelism” whose computations

can run concurrently

ExecutorCompletionService

runnable

submit()

|

1.submit(task)

take()

—
eg eé eé eg g 64

Completion

Queue

Future

Future

Future

execute() runQ)
N\
2.offer() 4’——§i>
<\ &
>>.< <
—> S
runnable é geéég
WorkQueue S~ WorkerThreads
TN
3.take()
5.add() 4.runQ)
/ runnable
ThreadPoolExecutor

Future

See en.wikipedia.org/wiki/Task parallelism

https://en.wikipedia.org/wiki/Task_parallelism

A Brief History of Concurrency & Parallelism in Java

ExecutorService executor =
Executors.newFixedThreadPool

« Advanced concurrency support

: 3 (numOfBeings,
 Focus on course-grained “task mThreadFactory):
parallelism” whose computations _ _ .
can run concurrently CyclicBarrier entryBarrier =

new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

Create a fixed-sized thread pool

i;’or/so.coor?’/naz;?tjletstakrt//;hg;Q for (int 1=0; 1 < beingCount; ++i1)
PPINgG OF MUMIPIE tasks tha executor .execute
acquire/release shared resources (makeBeingRunnable(i

entryBarrier,
exitBarrier));

See github.com/douaglascraigschmidt/LivelLessons/tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency & Parallellsm In Java

» Advanced concurrency support

» Feature-rich & optimized, but also
tedious & error-prone to program

A Brief History of Concurrency & Parallelism in Java

Applications

Additional Frameworks & Languages

« Foundational parallelism support

Java/JNI

Threading & Synchronization Packages

| Java Execution Environment (e.g., JVM)
e.q., Java fork-join pool
avallable in Java 1.7

C++/C

System Libraries

Operating System Kernel

C

30

A Brief History of Concurrency & Parallelism in Java

Task

e Foundational parallelism support fork()
. Sub-task; Sub-task,
» Focus on data parallelism
that runs the same task on fork() fork()
different data elementS Suti-taskll1 Sub-ltask1_2 Sub-tlaskz_1 Sub-talskz2
Process Process Process Process
sequentially sequentially sequentially sequentially

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

A Brief History of Concurrency & Parallelism in Java

List<List<SearchResults>>
lListOfListOfSearchResults =

. . ForkJoinPool
« Foundational parallellsm_ support _commonPool ()
» Focus on data parallelism . invoke(new
that runs the same task on SearchWithForkJoinTask
different data elements (InputList,

mPhrasesToFind, ...));

Input Strings to Search

Use a common fork-foin pool

to search input strings to . . - -

locate phrases that match

Search Phrases

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamForkJoin

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency & Parallelism in Java

Task
I
« Foundational parallelism support fork()
Sub-task, Sub-task,
fork() fork()
Sub-task; , Sub-task; , Sub-task, ; Sub-task; ,
I I I I
» Powerful & scalable, but Process Process Process Process
sequentially sequentially sequentially sequentially

trlcky to program correctly

33

A Brief History of Concurrency & Parallelism in Java

Applications

Additional Frameworks & Languages

» Advanced parallelism support

Java/JNI

Threading & Synchronization Packages

| Java Execution Environment (e.g., JVM)

e.q., Java parallel streams
& completable futures

C++/C

System Libraries

C

Operating System Kernel

34

A Brief History of Concurrency & Parallelism in Java

Parallel Streams

A A R A
» Advanced parallelism support 9? {}95 ! *é é
» Focus on functional programming filter(not(this: urICached))

for data parallelism {} ii ii

map(this::downloadimage)

V.

flatMap(this:.applyFilters)

S

35

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support
» Focus on functional programming
for data parallelism & asynchrony

Completable Futures

filter(not(this::uriCached))

A

map(this::downloadlmageAsync)

~>

map(this::makeFilterDecoratorsAsync)

~~

flatMap(this::applyFiltersAsync)

~~

collect(toList())

36

A Brief History of Concurrency & Parallelism in Java

List<Image> images = urls
-parallelStream()
. Filter(not(uriCached()))
« Advanced parallelism support -map(this: :downloadlmage)
« Focus on functional programming -FlatMap(this::applyFilters)
for data parallelism & asynchrony -collect(toList());

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

See github.com/douglascraigschmidt/LivelLessons/tree/master/ImageStreamGanq

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

A Brief History of Concurrency & Parallelism in Java

» Advanced parallelism support

Performance Productivity

» Strikes an effective balance between
productivity & performance

38

End of Background on Java
Concurrency & Parallelism

39

	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	An Overview �of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview �of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	A Brief History of Concurrency & �Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	End of Background on Java Concurrency & Parallelism

