
Background on Java
Concurrency & Parallelism

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the meaning of concurrency

& parallelism

join join join join

Sub-Task1.1 Sub-Task1.2 Sub-Task2.1 Sub-Task2.2

fork fork forkfork

join join

join

Sub-Task1 Sub-Task2

forkfork

Task

3

Learning Objectives in this Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

JAVA HISTORY

• Understand the meaning of concurrency
& parallelism

• Know the history of Java concurrency
& parallelism

4

Learning Objectives in this Lesson

Hopefully, you’ll already know much of this!!!

• Understand the meaning of concurrency
& parallelism

• Know the history of Java concurrency
& parallelism

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

5

An Overview
of Concurrency

6

An Overview of Concurrency

See en.wikipedia.org/wiki/Concurrency_(computer_science)

• Concurrency is a form of computing where threads can run simultaneously

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

7

An Overview of Concurrency
• Concurrency is a form of computing where threads can run simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

new Thread(() ->
someComputations());

A Java threads are units of execution
for instruction streams that can run

concurrently on processor cores

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

8

• Concurrency is a form of computing where threads can run simultaneously
• Concurrency often used to offload work

from main thread to background threads

An Overview of Concurrency

See developer.android.com/topic/performance/threads.html

UI
thread

background
threads

https://developer.android.com/topic/performance/threads.html

9

An Overview of Concurrency
• Concurrency is a form of computing where threads can run simultaneously

• Concurrency often used to offload work
from main thread to background threads

• Java threads interact with each other via
shared objects and/or message passing

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

get()

put()
send()

recv()

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

10

• Concurrency is a form of computing where threads can run simultaneously
• Concurrency often used to offload work

from main thread to background threads
• Java threads interact with each other via

shared objects and/or message passing
• Key goal is to share resources safely &

efficiently to avoid race conditions

An Overview of Concurrency

See en.wikipedia.org/wiki/Race_condition#Software

Race conditions occur when a program
depends upon the sequence or timing
of threads for it to operate properly

get()

put()

https://en.wikipedia.org/wiki/Race_condition#Software

11

• Concurrency is a form of computing where threads can run simultaneously
• Concurrency often used to offload work

from main thread to background threads
• Java threads interact with each other via

shared objects and/or message passing
• Key goal is to share resources safely &

efficiently to avoid race conditions

An Overview of Concurrency

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

This test program induces race conditions due
to lack of synchronization between producer &
consumer threads accessing a bounded queue

get()

put()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

12

An Overview
of Parallelism

13

An Overview of Parallelism
• Parallelism is a form of computing that

partitions tasks into sub-tasks that can
run independently & whose partial
results are combined

See en.wikipedia.org/wiki/Parallel_computing

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

https://en.wikipedia.org/wiki/Parallel_computing

14

• Parallelism is a form of computing that
partitions tasks into sub-tasks that can
run independently & whose partial
results are combined
• Key goal is to efficiently

(1) partition tasks into sub-
tasks & (2) combine results

An Overview of Parallelism

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

15

• Parallelism is a form of computing that
partitions tasks into sub-tasks that can
run independently & whose partial
results are combined
• Key goal is to efficiently

(1) partition tasks into sub-
tasks & (2) combine results

Parallelism is a performance optimization (e.g., throughput, scalability, & latency)

An Overview of Parallelism

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

16

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

• Parallelism is a form of computing that
partitions tasks into sub-tasks that can
run independently & whose partial
results are combined
• Key goal is to efficiently

(1) partition tasks into sub-
tasks & (2) combine results

• Parallelism works best when
there’s no shared mutable
state between threads

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

An Overview of Parallelism

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

17

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ

An Overview of Parallelism

http://www.youtube.com/watch?v=NsDE7E8sIdQ

18See www.infoq.com/presentations/parallel-java-se-8

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

His talk emphasizes that Java 8
combines functional programming
with fine-grained data parallelism
to leverage many-core processors

An Overview of Parallelism

http://www.infoq.com/presentations/parallel-java-se-8

19

A Brief History of
Concurrency &

Parallelism in Java

20

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

e.g., Java threads &
built-in monitor objects

available in Java 1.0

21

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

22

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue<Integer>
simpleQueue = new
SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

Allow multiple threads
to communicate via a

bounded buffer

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

23

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue<Integer>
simpleQueue = new
SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
new Thread(new Producer<>

(simpleQueue)),
new Thread(new Consumer<>

(simpleQueue))
};

for (Thread thread : threads)
thread.start();

for (Thread thread : threads)
thread.join();

Start & join these
multiple threads

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

24

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

class SimpleBlockingBoundedQueue
<E> {

public E take() ...{
synchronized(this) {
while (mList.isEmpty())
wait();

notifyAll();

return mList.poll();
}

}

Built-in monitor object
mutual exclusion &

coordination primitives

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

25

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

• Efficient, but low-level & very
limited in capabilities

26

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

e.g., Java executor framework,
synchronizers, blocking queues,
atomics, & concurrent collections

available in Java 1.5+

27

ThreadPoolExecutor

3.take()
4.run()

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

See en.wikipedia.org/wiki/Task_parallelism

WorkerThreads

execute() run()
runnable

runnableFuture

Future

Future

Future

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

https://en.wikipedia.org/wiki/Task_parallelism

28

A Brief History of Concurrency & Parallelism in Java

See github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

Create a fixed-sized thread pool
& also coordinate the starting &
stopping of multiple tasks that

acquire/release shared resources

• Foundational concurrency support
• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

ExecutorService executor =
Executors.newFixedThreadPool
(numOfBeings,
mThreadFactory);

...
CyclicBarrier entryBarrier =

new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
executor.execute
(makeBeingRunnable(i,
entryBarrier,
exitBarrier));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

29

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support

• Focus on course-grained “task
parallelism” whose computations
can run concurrently

• Feature-rich & optimized, but also
tedious & error-prone to program

30

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

e.g., Java fork-join pool
available in Java 1.7

31

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

See en.wikipedia.org/wiki/Data_parallelism

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

https://en.wikipedia.org/wiki/Data_parallelism

32See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamForkJoin

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

List<List<SearchResults>>
listOfListOfSearchResults =
ForkJoinPool
.commonPool()
.invoke(new

SearchWithForkJoinTask
(inputList,
mPhrasesToFind, ...));

Use a common fork-join pool
to search input strings to
locate phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

33

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support

• Focus on data parallelism
that runs the same task on
different data elements

• Powerful & scalable, but
tricky to program correctly

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

34

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support
• Advanced parallelism support Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

e.g., Java parallel streams
& completable futures
available in Java 1.8

35

A Brief History of Concurrency & Parallelism in Java

filter(not(this::urlCached))

collect(toList())

Parallel Streams

…

map(this::downloadImage)

flatMap(this::applyFilters)

• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support
• Advanced parallelism support

• Focus on functional programming
for data parallelism

36

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support
• Advanced parallelism support

• Focus on functional programming
for data parallelism & asynchrony

filter(not(this::urlCached))

collect(toList())

…

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

map(this::makeFilterDecoratorsAsync)

Completable Futures

37

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support
• Advanced parallelism support

• Focus on functional programming
for data parallelism & asynchrony

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

List<Image> images = urls
.parallelStream()
.filter(not(urlCached()))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

Download images that aren’t
already cached from a list of URLs &
process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

38

A Brief History of Concurrency & Parallelism in Java
• Foundational concurrency support
• Advanced concurrency support
• Foundational parallelism support
• Advanced parallelism support

• Focus on functional programming
for data parallelism & asynchrony

• Strikes an effective balance between
productivity & performance

39

End of Background on Java
Concurrency & Parallelism

	Slide Number 1
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	Learning Objectives in this Lesson
	An Overview �of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview of Concurrency
	An Overview �of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	An Overview of Parallelism
	A Brief History of Concurrency & �Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	A Brief History of Concurrency & Parallelism in Java
	End of Background on Java Concurrency & Parallelism

