
The PrimeCheck App Case Study:
Overview

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of ComPOSTer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how various Project Reactor frameworks are applied in a case

study using Spring WebFlux to check primality of large integers asynchronously

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2

PCServerApplication

Asynchronous
HTTP GET/POST

requests/
responses

PCServer
Controller

PCServer
Service

PrimeCheckTest

PCCF
Strategy

PCPF
Strategy

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2

3

Overview of the Prime
Check App Case Study

4

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

PCServerApplication

Asynchronous
HTTP GET
requests/
responses

PCServer
Controller

PCServer
Service

PrimeCheckTest

PCCF
Strategy

PCPF
Strategy

5

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

PrimeCheckTest

The client can send requests
individually or in bulk, as well as in
parallel using two Project Reactor

concurrency/parallelism frameworks

See WebFlux/ex2/src/test/java/primechecker/client

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2/src/test/java/primechecker/client

6

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

PCServerApplication

The server can receive requests
individually or in bulk & process
the requests in parallel using the
two Project Reactor frameworks

See WebFlux/ex2/src/main/java/server

PCServer
Controller

PCServer
Service

PCCF
Strategy

PCPF
Strategy

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2/src/main/java/server

7

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

The PCServerController automatically
converts HTTP GET/POST requests
into Java types & forwards them to
the PCServerService for processing

See WebFlux/ex2/src/main/java/primechecker/server/PCServerController.java

PCServerApplication

PCServer
Controller

PCServer
Service

PCCF
Strategy

PCPF
Strategy

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebFlux/ex2/src/main/java/primechecker/server/PCServerController.java

8

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

See WebFlux/ex2/src/main/java/primechecker/server/PCServerService.java

PCServer
Controller

PCServer
Service

PCCF
Strategy

PCPF
Strategy

The PCServerService forwards to a
given strategy configured as a field

PCServerApplication

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebFlux/ex2/src/main/java/primechecker/server/PCServerService.java

9

Overview of the PrimeCheck App Case Study
• This case study shows how Spring WebFlux can send & receive HTTP GET/

POST requests to/from concurrent/parallel clients & servers asynchronously

The given strategy checks the primality
of Integers passed to it from the controller
& service using one of the specified Project
Reactor concurrency/parallelism frameworks

PCServer
Controller

PCServer
Service

PCCF
Strategy

PCPF
Strategy

See WebFlux/ex2/src/main/java/primechecker/server/strategies

PCServerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2/src/main/java/primechecker/server/strategies

10

Structure of the
PrimeCheck App Project

11

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex2

12

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• main
• server
• Contains the “app” entry point,

the controller, & the service
implementation strategies

13

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• main
• server
• common
• Consolidates various project-

specific helper classes

14

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• main
• server
• common
• utils
• Consolidates various general-

purpose reusable helper classes

15

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• main
• server
• common
• utils
• resources
• Defines various application properties
• e.g., name & port number

16

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• test
• PrimeCheckTest
• This test driver measures the time taken

by the client to send/receive requests/
responses asynchronously to/from the
microservice running on the server
& displays the results

17

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• test
• PrimeCheckTest
• client
• Sends HTTP GET/POST requests to the

server asynchronously using two Project
Reactor concurrency/parallelism frameworks

18

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• test
• PrimeCheckTest
• client
• common
• Consolidates various project-specific

reusable helper classes

19

Structure of the PrimeCheck App Project
• The PrimeCheck App project source code

is organized into several packages
• test
• PrimeCheckTest
• client
• common
• utils
• Consolidates various general-

purpose reusable helper classes

20

Pros & Cons of the
PrimeCheck App

21

Pros & Cons of the PrimeCheck App
• Pros
• All service implementations run in a single process, which simplifies

configuration, deployment, testing, & security

22

Pros & Cons of the PrimeCheck App
• Pros
• All service implementations run in a single process, which simplifies

configuration, deployment, testing, & security
• Asynchrony may enable greater scalability

23

Pros & Cons of the PrimeCheck App
• Cons
• All service implementations run in a single process, which can degrade

system scalability & reliability

24

Pros & Cons of the PrimeCheck App
• Cons
• All service implementations run in a single process, which can degrade

system scalability & reliability
• Asynchrony can be trickier to develop & debug

25

End of the PrimeCheck
App Case Study: Overview

