
The QuoteServices App Case Study: Gateway
Microservice Structure & Functionality

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of the Gateway microservice

implementation in the QuotesServices app case study
QuoteDriver

HTTP GET/POST
requests/
responses

Microservice-based Quotes App

Handey
Application

Zippy
Application

Gateway

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex4/gateway

This code is almost
entirely declarative

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex4/gateway

3

Overview of the Spring
Cloud API Gateway

4See blog.knoldus.com/spring-cloud-api-gateway

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components

https://blog.knoldus.com/spring-cloud-api-gateway

5

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• Consists of an ID, destination

URI, collection of predicates,
& a collection of filters

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

6

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• Consists of an ID, destination

URI, collection of predicates,
& a collection of filters
• Routes can be created either

programmatically (using Java)
or declaratively (using YAML)

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

7

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• URI
• The URI indicates where

the microservice resides
• This directive isn’t necessary

if a discover service is used

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

This implementation hard-codes the URIs & does not use a discovery service

8

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• URI
• Predicates
• Can match HTTP requests
• e.g., headers, URLs,

cookies, or parameters

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

Match “handey” or “zippy”
route names in the path

9

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• URI
• Predicates
• Can match HTTP requests
• A route is considered “matched”

if the aggregate predicate is true

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

10

Overview of the Spring Cloud API Gateway
• The Spring Cloud API Gateway consists

of several components
• Routes
• URI
• Predicates
• Filters
• Can modify the request or

response as per requirements

routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1

Remove the first path segment
(e.g., “handey” or “zippy”) from

URI before forwarding the request
to the downstream microservice

11

Structure & Functionality
of the Gateway Microservice

12

Structure & Functionality of the Gateway Microservice
• The API Gateway is configured

largely using declarative YAML
files

See en.wikipedia.org/wiki/YAML

YAML = “YAML Ain’t
Markup Language”!!

https://en.wikipedia.org/wiki/YAML

13

Structure & Functionality of the Gateway Microservice
• This API Gateway is configured

largely using declarative YAML
files
• application.yml

See WebMVC/ex4/gateway/src/main/resources/application.yml

server:
 port: 8080
spring:
 profiles:
 active: path
 application:
 name: gateway
 ...
eureka:
 client:
 register-with-eureka: true
 fetch-registry: true
 serviceUrl:
 defaultZone:
 http://localhost:8761/eureka

YAML data file configures
a Gateway microservice &
registers it with Eureka

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex4/gateway/src/main/resources/application.yml

14

Structure & Functionality of the Gateway Microservice
• This API Gateway is configured

largely using declarative YAML
files
• application.yml
• application-path.yml

See WebMVC/ex4/gateway/src/main/resources/application-path.yml

spring:
 cloud:
 gateway:
 routes:
 - id: handey
 uri: http://localhost:9100
 predicates:
 - Path= /handey/**
 filters:
 - StripPrefix=1 # ...
 - id: zippy
 uri: http://localhost:9101
 predicates:
 - Path= /zippy/**
 filters:
 - StripPrefix=1 # ...

This YAML data file configures
the routes to Quotes microservices
that are handled automatically by

the Gateway microservice

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex4/gateway/src/main/resources/application-path.yml

15

End of the QuoteServices
App Case Study: Gateway
MicroService Structure &

Functionality

