
The LockManager App Case Study:
Test Driver Implementation & Behavior

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the implementation of the LockManagerTest class & associated

client code that invoke synchronous methods on the LockManagerController

Synchronous
HTTP POST
requests/
responses

LockManagerTest LockManagerApplication

LockManager
Controller

LockManager
Service

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

3

Overview of the
LockManagerTest Driver

4

Overview of the LockManagerTest Driver
• This SpringBootTest class exercises

all the features of the LockManager
Application microservice

See www.baeldung.com/spring-boot-testing

http://www.baeldung.com/spring-boot-testing

5

Overview of the LockManagerTest Driver
• This SpringBootTest class exercises

all the features of the LockManager
Application microservice
• It loads the application context

& tests the interaction between
client & server components

Synchronous
HTTP POST
requests/
responses

LockManager
Controller

LockManager
Service

6

Overview of the LockManagerTest Driver
• This SpringBootTest class exercises

all the features of the LockManager
Application microservice
• It loads the application context

& tests the interaction between
client & server components

• Its @Test-annotated methods
validate the behavior of the
LockManagerApplication under
concurrent scenarios where
multiple processes/threads
interact via shared resources

7

Overview of the LockManagerTest Driver
• The testSingleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release a single lock
concurrently from a LockManager

int maxLocks = 2;
int maxClients = 4;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testSingleLock
 (client,
 lockManager));

8

Overview of the LockManagerTest Driver
• The testSingleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release a single lock
concurrently from a LockManager

int maxLocks = 2;
int maxClients = 4;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testSingleLock
 (client,
 lockManager));

Create a LockManager
with a permit count of 2

9

Overview of the LockManagerTest Driver
• The testSingleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release a single lock
concurrently from a LockManager

int maxLocks = 2;
int maxClients = 4;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testSingleLock
 (client,
 lockManager));

Execute test operations for 4 clients
concurrently using parallel streams

10

Overview of the LockManagerTest Driver
• The testSingleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release a single lock
concurrently from a LockManager

int maxLocks = 2;
int maxClients = 4;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testSingleLock
 (client,
 lockManager));Each client calls the testSingleLock() method,

which tests acquiring & releasing a single lock

11

void testSingleLock
 (int client,
 LockManager lockManager) {

 var lock = mLockAPI
 .acquire(lockManager);

 var result = mLockAPI
 .release(lockManager,
 lock);

}

Overview of the LockManagerTest Driver
• The testSingleLock() method
• Acquire & release a single Lock

object on a given client

12

void testSingleLock
 (int client,
 LockManager lockManager) {

 var lock = mLockAPI
 .acquire(lockManager);
 ...

 var result = mLockAPI
 .release(lockManager,
 lock);

}

Overview of the LockManagerTest Driver
• The testSingleLock() method
• Acquire & release a single Lock

object on a given client

Invoke remote acquire() & release()
methods on the LockManagerController

via the generated LockAPI proxy

13

Overview of the LockManagerTest Driver
• The testMultipleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release multiple locks
concurrently from a LockManager

int maxLocks = 4;
int maxClients = 8;
int maxPermits = 2;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testMultipleLocks
 (client,
 lockManager,
 maxPermits));

14

Overview of the LockManagerTest Driver
• The testMultipleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release multiple locks
concurrently from a LockManager

int maxLocks = 4;
int maxClients = 8;
int maxPermits = 2;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testMultipleLocks
 (client,
 lockManager,
 maxPermits));

Create a LockManager
with a permit count of 4

15

Overview of the LockManagerTest Driver
• The testMultipleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release multiple locks
concurrently from a LockManager

int maxLocks = 4;
int maxClients = 8;
int maxPermits = 2;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testMultipleLocks
 (client,
 lockManager,
 maxPermits));

Execute test operations for 8 clients
concurrently using parallel streams

16

Overview of the LockManagerTest Driver
• The testMultipleAcquireAndRelease()

method
• Ensure multiple client threads can

acquire & release multiple locks
concurrently from a LockManager

int maxLocks = 4;
int maxClients = 8;
int maxPermits = 2;

var lockManager = mLockAPI
 .create(maxLocks);

IntStream
 .range(0, maxClients)
 .parallel()
 .forEach(client ->
 testMultipleLocks
 (client,
 lockManager,
 maxPermits));

Each client calls the testMultipleLocks() method,
which tests acquiring & releasing multiple permits

17

void testMultipleLocks
 (int client,
 LockManager lockManager,
 int maxPermits) {

 var locks = mLockAPI
 .acquire(lockManager,
 maxPermits);
 ...

 var result = mLockAPI
 .release(lockManager,
 locks);

}

Overview of the LockManagerTest Driver
• The testMultipleLocks() method
• Acquire & release multiple Lock

objects on a given client

18

void testMultipleLocks
 (int client,
 LockManager lockManager,
 int maxPermits) {

 var locks = mLockAPI
 .acquire(lockManager,
 maxPermits);
 ...

 var result = mLockAPI
 .release(lockManager,
 locks);

}

Overview of the LockManagerTest Driver
• The testMultipleLocks() method
• Acquire & release multiple Lock

objects on a given client

Invoke remote acquire() & release()
methods on the LockManagerController

via the generated LockAPI proxy

19

Implementing the
LockManagerTest Driver

20

Implementing the LockManagerTest Driver

See WebMVC/ex5/src/test/java/edu/vandy/lockmanager/LockManagerTests.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/test/java/edu/vandy/lockmanager/LockManagerTests.java

21

End of the LockManager
App Case Study: Test Driver
Implementation & Behavior

