The LockManager App Case Study:

Client Structure & Functionality

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of client components that send/receive
HTTP POST requests/responses to/from the microservice synchronously

r]] L]]] L ‘ P et

LockManagerTest LockManagerApplication

/\M

[LockManager]
Synchronous Controller

[
5
metneskirions.ctass, HTTP POST :
requests/ LockManager
responses ! Service

PrimeCheckController.class

S " public class PrimeCheckTest| {

E of 5 € f f

11T} TTIIIY

h_______ __

See github.com/douglascraigschmidt/LivelLessons/tree/master/WebMVC/ex5

Fg PRIRRERRE o e Oty
H

N o e e e e e o e = P

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

Learning Objectives in this Part of the Lesson

« Recognize how the Spring HTTP
Interface Clients feature works

= #/ Baeldung Q
HTTP Interface in Spring 6

The Spring Framework release 6, as well as Spring Boot version 3, enables us to define
declarative HTTP services using Java interfaces. The approach is inspired by popular HTTP
client libraries like Feign and is similar to how we define repositories in Spring Data.

In this tutorial, we'll first look at how to define an HTTP interface. Then, we'll check the
available exchange method annotations, as well as the supported method parameters and
return values. Next, we'll see how to create an actual HTTP interface instance, a proxy client
that performs the declared HTTP exchanges.

Finally, we'll check how to perform exception handling and testing of the declarative HTTP
interface and its proxy client.

2. HTTP Interface

The declarative HTTP interface includes annotated methods for HTTP exchanges. We can
simply express the remote API details using an annotated Java interface and let Spring
generate a proxy that implements this interface and performs the exchanges. This helps
reduce the boilerplate code.

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface

Overview of the HTTP
Interface Clients Feature

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients
feature can define client-side HTTP
resources declaratively

= 4 Baeldung Q
HTTP Interface in Spring 6

The Spring Framework release 6, as well as Spring Boot version 3, enables us to define
declarative HTTP services using Java interfaces. The approach is inspired by popular HTTP
client libraries like Feign and is similar to how we define repositories in Spring Data.

In this tutorial, we'll first look at how to define an HTTP interface. Then, we'll check the
available exchange method annotations, as well as the supported method parameters and
return values. Next, we'll see how to create an actual HTTP interface instance, a proxy client
that performs the declared HTTP exchanges.

Finally, we'll check how to perform exception handling and testing of the declarative HTTP
interface and its proxy client.

2. HTTP Interface

The declarative HTTP interface includes annotated methods for HTTP exchanges. We can
simply express the remote API details using an annotated Java interface and let Spring
generate a proxy that implements this interface and performs the exchanges. This helps
reduce the boilerplate code.

2.1. Exchange Methods

@HttpExchange is the root annotation we can apply to an HTTP interface and its
exchange methods. In case we apply it on the interface level, then it applies to all exchange
methods. This can be useful for specifying attributes common to all interface methods like
content type or URL prefix.

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface

Overview of the HTTP Interface Clients Feature

 Spring’s 6 HTTP Interface Clients public interface LockAPI ({
feature can define client-side HTTP @PostExchange (ACQUIRE LOCKS)
resources declaratively Li(z;:m::zp:ig;ire
» Declarative HTTP Clients Locﬁanager lockManager,
» Define HTTP clients using simple @RequestParam
Java-like interfaces Integer permits);

@PostExchange (RELEASE LOCK)
Boolean release
(@RequestParam LockManager
lockManager,
@RequestBody Lock lock) ;

Overview of the HTTP Interface Clients Feature

» Spring’s 6 HTTP Interface Clients var uri = UriComponentsBuilder
feature can define client-side HTTP - fromPath (ACQUIRE_ LOCKS)
resources declaratively

]] .queryParam (LOCK MANAGER,
e Declarative HTTP Clients by

lockManager)

.queryParam (PERMITS, permits)

e Avoid manual creation of client

.build()
code for RESTful calls

.toUriString() ;

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients public interface LockAPI ({
feature can define client-side HTTP @PostExch«‘fmge (ACQUIRE_LOCK)
resources declaratively Lock acquire(@RequestParam

_ _ LockManager lockManager) ;
 Annotation-Driven

« Utilize Spring MVC annotations

to map client interface methods @PostExchange (RELEASE LOCK)

to HTTP requests Boolean release
(@RequestParam LockManager
lockManager,

@RequestBody Lock lock) ;

Overview of the HTTP Interface Clients Feature

 Spring’s 6 HTTP Interface Clients public interface LockAPI ({
feature can define client-side HTTP @PostExcha_mge (ACQUIRE_LOCK)
resources declaratively Lock acquire(@RequestParam

_ _ LockManager lockManager) ;
 Annotation-Driven

@PostExchange (RELEASE LOCK)
Boolean release

. : : o, (@RequestParam LockManager
- Maintain consistency with Spring’s lockManager,

server-side annotations @RequestBody Lock lock) ;

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients public LockAPI getLockAPI() {
feature can define client-side HTTP var webClient =
resources declaratively Webgl?‘lezt 0
.Dul er
« WebClient Integration

.baseUrl (SERVER BASE URL)
« Seamlessly works with the Jbuild() ;

non-blocking, reactive Web
Client for HTTP calls

See www.baeldung.com/spring-5-webclient

http://www.baeldung.com/spring-5-webclient

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients
feature can define client-side HTTP
resources declaratively

« WebClient Integration

 Supports both synchronous &
asynchronous communication

Request Locks

SR)
()
1 >
N4
Client Server
()
A4
— Response List of Locks —
_ Request Locks —
()
1 >
_/
Client Server

Response Flux of Locks

11

Overview of the HTTP Interface Clients Feature

Spring’s 6 HTTP Interface Clients
feature can define client-side HTTP
resources declaratively

« Dynamic Proxy Implementation

» Spring auto-generates proxy
classes that implement an
interface at runtime

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients 78R\ T
feature can define client-side HTTP
resources declaratively

« Dynamic Proxy Implementation

 Simplifies the implementation
by abstracting the HTTP request
handling

 Proxies handle details of establishing HTTP connections, sending
requests, receiving responses, & converting responses to Java objects

13

Overview of the HTTP Interface Clients Feature

Spring’s 6 HTTP Interface Clients public interface LockAPI ({
feature can define client-side HTTP @PostExchange (ACQUIRE LOCK)
resources declaratively Lock acquire(@RequestParam
. Type Safety LockManager lockManager) ;
» Compile-time checking for URL Xk
pathsl query parameters, & @PostExchange (RELEASE LOCK)
body objects Boolean release
(QRequestParam LockManager
lockManager,

@RequestBody Lock 1lock) ;

14

Overview of the HTTP Interface Clients Feature
« Spring’s 6 HTTP Interface Clients
feature can define client-side HTTP
resources declaratively

« Type Safety

« Minimizes runtime errors due
to type mismatches

15

Overview of the HTTP Interface Clients Feature

« Spring’s 6 HTTP Interface Clients

feature can define client-side HTTP % w{:t noI repeai mvsetg
. will NOT repeal” myse

resources declaratively Tl ok ek maele

 Reduced Boilerplate I will not cepeat myself

C I will not repeat myself

« Minimize repetitive code for 1 will not repeat myself

handling HTTP connections & I will not cepeat myself
I will not repeat myself
responses I will not repeat myself

Don't Repeat Yourself

Repetition is the ROOT of ALL Software Evil

See en.wikipedia.org/wiki/Don’t repeat yourself

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Overview of the HTTP Interface Clients Feature
« Spring’s 6 HTTP Interface Clients -
feature can define client-side HTTP
resources declaratively

« Reduced Boilerplate

« Focus on defining operations,
not the underlying mechanics

* i.e., the "what” not the “how”

17

The Structure & Functionality
of LockAPI Interface

18

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({

@PostExchange (CREATE) ———_ | TAhis design uses the declarative
LockManager create (@RequestParam | Spring 6 HTTP interface features

@PostExchange (ACQUIRE LOCK)
Lock acquire (@RequestParam LockManager lockManager) ;

@PostExchange (RELEASE LOCK)
Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock 1lock) ;

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({
@PostExchange (CREATE)
LockManager create (@RequestParam Integer maxLocks) ;

These proxy methods shield
clients from low-level details
of HTTP programming

@PostExchange (ACQUIRE LOCK)
Lock acquire (QRequestParam LockManager

@PostExchange (RELEASE LOCK)
Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock 1lock) ;

Spring 6 HTTP interface features are cleaner than Retrofit, but less pervasive

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({
@PostExchange (CREATE)
LockManager create (@RequestParam Integer maxLocks) ;

@PostExchange (ACQUIRE LOCK)
Lock acquire (@lRequestParam LockManager lockManager) ;

... ———— | These two-way calls are all synchronous
@PostExchange (RELEASE LOCK) & they return conventional Java types

Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock 1lock) ;

.-

21

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({
@PostExchange (CREATE)
LockManager create (@RequestParam Integer maxLocks) ;

@PostExchange (ACQUIRE LOCK)
Lock acquire (@RequestParam LockManager lockManager) ;

These annotations mark these
methods as HTTP POST endpoints

@PostExchange (RELEASE LOCK)
Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock 1lock) ;

See http-declarative-http-client-httpexchange/# 3-creating-an-http-service-interface

https://howtodoinjava.com/spring-webflux/http-declarative-http-client-httpexchange/

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({
@PostExchange (CREATE)
LockManager create (@RequestParam Integer maxLocks) ;

@PostExchange (ACQUIRE LOCK)
Lock acquire (QRequestParam LockManager lockManager) ;

—— | These paths identify a
specific HTTP endpoint

@PostExchange (RELEASE LOCK)
Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock 1lock) ;

23

The Structure & Functionality of the LockAPI Interface

« The LockAPI interface hides details of remote method invocations via HTTP

public interface LockAPI ({
@PostExchange (CREATE)
LockManager create (@RequestParam Integer maxLocks) ;

@PostExchange (ACQUIRE LOCK)
Lock acquire (lRequestParam LockManager lockManager) ;

@PostExchange (RELEASE LOCK)
Boolean release (@RequestParam LockManager lockManager,
@RequestBody Lock lock) ;

} o \ These annotations are the same

ones used by a Spring controller

See www.javab7.com/2023/02/requestparam-vs-requestbody-in-spring.html

https://www.java67.com/2023/02/requestparam-vs-requestbody-in-spring.html

Creating an Instance of
the LockAPI Interface

25

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({
@Bean
public LockAPI getLockAPI () {
var webClient = WebClient.builder ()
.baseUrl (LOCK_MANAGER SERVER BASE URL) .build() ;

return HttpServiceProxyFactory
.builder (WebClientAdapter
.forClient (webClient))
.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))
.build()
.createClient (LockAPI.class); ...

See WebMVC/ex5/src/test/java/edu/vandy/lockmanager/ClientBeans.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/test/java/edu/vandy/lockmanager/ClientBeans.java

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({

@Bean

This @Bean annotation can be injected into
classes using Spring’s @Autowired annotation

public LockAPI getLockAPI() {
var webClient = WebClient.builder ()
.baseUrl(LOCK_MANAGER;SERVER;BASE_URL).build();

return HttpServiceProxyFactory
.builder (WebClientAdapter
.forClient (webClient))
.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))

.build()

.createClient (LockAPI.class);

27

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({
@Bean

Create the main entry point
for performing web requests
(for both sync & async calls)

public LockAPI getLockAPI() { — |
var webClient = WebClient.builder ()

.baseUrl (LOCK_MANAGER SERVER BASE URL) .build() ;

return HttpServiceProxyFactory
.builder (WebClientAdapter
.forClient (webClient))

.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))

.build()
.createClient (LockAPI.class);

See www.baeldung.com/spring-5-webclient

http://www.baeldung.com/spring-5-webclient

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({
@Bean
public LockAPI getLockAPI() {
var webClient = WebClient.builder ()
.baseUrl (LOCK_MANAGER SERVER BASE URL) .build() ;

return HttpServiceProxyFactory Aaapt WebClient to provide

.builder (WebClientAdapter ~— | @ Synchronous proxy using
.forClient (webClient)) the Spring HTTP interface

.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))
.build()
.createClient (LockAPI.class);

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({
@Bean
public LockAPI getLockAPI() {
var webClient = WebClient.builder ()

.baseUrl (LOCK_MANAGER SERVER BASE URL) .build() ;

return HttpServiceProxyFactory
.builder (WebClientAdapter
.forClient (webClient))

Extend default client
timeout period

.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))

.build()
.createClient (LockAPI.class);

30

Creating an Instance of the LockAPI Interface

« The ClientBeans class contains a factory method bean that creates the
LockAPI proxy that uses the Spring 6 HTTP interface features

@Component
public class ClientBeans ({
@Bean
public LockAPI getLockAPI() {
var webClient = WebClient.builder ()
.baseUrl (LOCK_MANAGER SERVER BASE URL) .build() ;

return HttpServiceProxyFactory
.builder (WebClientAdapter
.forClient (webClient))
.blockTimeout (Duration.ofSeconds (sTIMEOUT DURATION))
.build()
.createClient (LockAPI.class);

31 Create an instance of LockAPI

End of the LockManager
App Case Study: Client
Structure & Functionality

32

