
The LockManager App Case Study:
Server Structure & Functionality (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• This lesson gives an overview of the semaphore algorithm implemented using
Java ArrayBlockingQueue

Learning Objectives in this Part of the Lesson

See WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server

LockManagerApplication

LockManager
Controller

LockManager
Service

Synchronous
HTTP POST
requests/
responses

LockManagerTest

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server

3

The ArrayBlockingQueue
Semaphore Algorithm

4

The ArrayBlockingQueue Semaphore Algorithm
• LockManagerService uses Array

BlockingQueue to manage a fixed
of permits/locks that mediate
access to a shared resource

See en.wikipedia.org/wiki/Semaphore_(programming)

http://en.wikipedia.org/wiki/Semaphore_(programming)

5

The ArrayBlockingQueue Semaphore Algorithm
• LockManagerService uses Array

BlockingQueue to manage a fixed
of permits/locks that mediate
access to a shared resource
• This fixed capacity limits the #

of concurrent accesses

See www.visitnewportbeach.com/beaches-and-parks/corona-del-mar-state-beach

http://www.visitnewportbeach.com/beaches-and-parks/corona-del-mar-state-beach

6

The ArrayBlockingQueue Semaphore Algorithm
• LockManagerService uses Array

BlockingQueue to manage a fixed
of permits/locks that mediate
access to a shared resource
• This fixed capacity limits the #

of concurrent accesses
• This queue is suitable for managing

locks in multi-threaded programs
• Ensures thread-safety & atomic

acquire() & release() operations

7

The ArrayBlockingQueue Semaphore Algorithm
• Initialization
• Create an ArrayBlockingQueue

with a capacity equal to the #
of permits

LockManager create(Integer permits) {
 var availableLocks = new
 ArrayBlockingQueue<Lock>
 (permits, true);

 availableLocks.addAll
 (makeLocks(permits));

 var lockManager = new LockManager
 (generateUniqueId(), permits);

 mLockManagerMap.put
 (lockManager, availableLocks);

 return lockManager; ...

8

The ArrayBlockingQueue Semaphore Algorithm
• Initialization
• Create an ArrayBlockingQueue

with a capacity equal to the #
of permits

• The queue is initialized with
fairness set to true
• Threads acquire locks in

the order requested,
preventing starvation

LockManager create(Integer permits) {
 var availableLocks = new
 ArrayBlockingQueue<Lock>
 (permits, true);

 availableLocks.addAll
 (makeLocks(permits));

 var lockManager = new LockManager
 (generateUniqueId(), permits);

 mLockManagerMap.put
 (lockManager, availableLocks);

 return lockManager; ...

See docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

9

The ArrayBlockingQueue Semaphore Algorithm
• Initialization
• Create an ArrayBlockingQueue

with a capacity equal to the #
of permits

• The queue is initialized with
fairness set to true

• This queue is filled with Lock
objects
• Each represents a permit

LockManager create(Integer permits) {
 var availableLocks = new
 ArrayBlockingQueue<Lock>
 (permits, true);

 availableLocks.addAll
 (makeLocks(permits));

 var lockManager = new LockManager
 (generateUniqueId(), permits);

 mLockManagerMap.put
 (lockManager, availableLocks);

 return lockManager; ...

10

The ArrayBlockingQueue Semaphore Algorithm
• Initialization
• Create an ArrayBlockingQueue

with a capacity equal to the #
of permits

• The queue is initialized with
fairness set to true

• This queue is filled with Lock
objects

• A LockManager keeps track of
allocation ArrayBlockingQueue
objects

LockManager create(Integer permits) {
 var availableLocks = new
 ArrayBlockingQueue<Lock>
 (permits, true);

 availableLocks.addAll
 (makeLocks(permits));

 var lockManager = new LockManager
 (generateUniqueId(), permits);

 mLockManagerMap.put
 (lockManager, availableLocks);

 return lockManager; ...

11

The ArrayBlockingQueue Semaphore Algorithm
• Initialization
• Create an ArrayBlockingQueue

with a capacity equal to the #
of permits

• The queue is initialized with
fairness set to true

• This queue is filled with Lock
objects

• A LockManager keeps track of
allocation ArrayBlockingQueue
objects

• LockManager is returned to the
client to differentiate each of
the semaphore instances

LockManager create(Integer permits) {
 var availableLocks = new
 ArrayBlockingQueue<Lock>
 (permits, true);

 availableLocks.addAll
 (makeLocks(permits));

 var lockManager = new LockManager
 (generateUniqueId(), permits);

 mLockManagerMap.put
 (lockManager, availableLocks);

 return lockManager; ...

12

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1) @Async public void acquire

 (LockManager lockManager,
 Callback callback) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);
 ...

 tryAcquire(callback,
 availableLocks);
 ...
}

Called by LockManagerController
to acquire just a single lock

13

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async

See www.baeldung.com/spring-async

@Async public void acquire
 (LockManager lockManager,
 Callback callback) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);
 ...

 tryAcquire(callback,
 availableLocks);
 ...
}

http://www.baeldung.com/spring-async

14

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async

: Worker
Thread

Invoke
Virtual()

acquire()

: acquire()
Thread

run()

@Async public void acquire
 (LockManager lockManager,
 Callback callback) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);
 ...

 tryAcquire(callback,
 availableLocks);
 ...
} @Async indicates it runs in a back

ground (virtual) thread, separate
from the HTTP worker thread

15

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async
• acquire() thus doesn’t block the

calling thread while waiting for
a lock to become available

See www.baeldung.com/spring-async

@Async public void acquire
 (LockManager lockManager,
 Callback callback) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);
 ...

 tryAcquire(callback,
 availableLocks);
 ...
}

http://www.baeldung.com/spring-async

16

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async
• The acquire() method first tries

to obtain a lock by polling the
ArrayBlockingQueue

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html#poll

void tryAcquire(Callback callback,
 ArrayBlockingQueue<Lock>
 availableLocks) {
 var lock = availableLocks.poll();

 if (lock != null)
 ...
 else
 lock = availableLocks.take();

 callback.onSuccess(lock);
}

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

17

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async
• The acquire() method first tries

to obtain a lock by polling the
ArrayBlockingQueue
• If a Lock is available, the non-

blocking acquire is successful

void tryAcquire(Callback callback,
 ArrayBlockingQueue<Lock>
 availableLocks) {
 var lock = availableLocks.poll();

 if (lock != null)
 ...
 else
 lock = availableLocks.take();

 callback.onSuccess(lock);
}

18

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async
• The acquire() method first tries

to obtain a lock by polling the
ArrayBlockingQueue
• If a Lock is available, the non-

blocking acquire is successful
• If no Lock is available, the

service blocks by calling
take() to wait for a Lock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html#take

void tryAcquire(Callback callback,
 ArrayBlockingQueue<Lock>
 availableLocks) {
 var lock = availableLocks.poll();

 if (lock != null)
 ...
 else
 lock = availableLocks.take();

 callback.onSuccess(lock);
}

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

19

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (1)
• This acquire() method is marked

with @Async
• The acquire() method first tries

to obtain a lock by polling the
ArrayBlockingQueue

• Upon successfully acquiring a
lock the service notifies the caller
through a callback interface

See en.wikipedia.org/wiki/Callback_(computer_programming)

void tryAcquire(Callback callback,
 ArrayBlockingQueue<Lock>
 availableLocks) {
 var lock = availableLocks.poll();

 if (lock != null)
 ...
 else
 lock = availableLocks.take();

 callback.onSuccess(lock);
}

https://en.wikipedia.org/wiki/Callback_(computer_programming)

20

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2) DeferredResult<List<Lock>> acquire

 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

Called by LockManagerController
to acquire multiple lock permits

21See springframework/web/context/request/async/DeferredResult.html

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• Holds the future result of the

lock acquisition process

DeferredResult<List<Lock>> acquire
 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/context/request/async/DeferredResult.html

22

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• Holds the future result of the

lock acquisition process
• Allow acquire() to return ASAP

DeferredResult<List<Lock>> acquire
 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

23See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#submit

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• Holds the future result of the

lock acquisition process
• Allow acquire() to return ASAP

DeferredResult<List<Lock>> acquire
 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

Acquire permits in
the background

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

24

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits

DeferredResult<List<Lock>> acquire
 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

25

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable

Runnable getRunnable(int permits,
 ArrayBlockingQueue<Lock>
 availLocks,
 DeferredResult<List<Lock>>
 result) {
 return () -> {
 var locks = new ArrayList
 <Lock>(permits);
 while (tryAcquire
 (availLocks, locks)
 != permits)
 continue;
 result.setResult(locks);
 }
}

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

26

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue

Runnable getRunnable(int permits,
 ArrayBlockingQueue<Lock>
 availLocks,
 DeferredResult<List<Lock>>
 result) {
 return () -> {
 var locks = new ArrayList
 <Lock>(permits);
 while (tryAcquire
 (availLocks, locks)
 != permits)
 continue;
 result.setResult(locks);
 }
}

27

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue

Ensure that task either acquires all
required permits or none, preventing
partial acquisitions that could lead to

deadlocks or resource starvation

Integer tryAcquire
 (ArrayBlockingQueue<Lock>
 availLocks, List<Lock> locks){
 var lock = availLocks.poll();

 if (lock != null) {
 locks.add(lock);
 return locks.size();
 } else {
 locks.forEach(locks::offer);
 locks.clear();
 return 0;
 }

28

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue
Each successful poll adds a lock
to the list of acquired locks &
return current size of the locks

Integer tryAcquire
 (ArrayBlockingQueue<Lock>
 availLocks, List<Lock> locks){
 var lock = availLocks.poll();

 if (lock != null) {
 locks.add(lock);
 return locks.size();
 } else {
 locks.forEach(locks::offer);
 locks.clear();
 return 0;
 }
}

29

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue

If lock can’t be acquired, all locks
already acquired are returned to
queue, the list of locks is cleared,

& the caller will then try again

Integer tryAcquire
 (ArrayBlockingQueue<Lock>
 availLocks, List<Lock> locks){
 var lock = availLocks.poll();

 if (lock != null) {
 locks.add(lock);
 return locks.size();
 } else {
 locks.forEach(locks::offer);
 locks.clear();
 return 0;
 }
}

30

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue

Loop continues until all
permits are acquired!

Runnable getRunnable(int permits,
 ArrayBlockingQueue<Lock>
 availLocks,
 DeferredResult<List<Lock>>
 result) {
 return () -> {
 var locks = new ArrayList
 <Lock>(permits);
 while (tryAcquire
 (availLocks, locks)
 != permits)
 continue;
 result.setResult(locks);
 }
}

See en.wikipedia.org/wiki/Non-blocking_algorithm

https://en.wikipedia.org/wiki/Non-blocking_algorithm

31

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits
• Factory returns a Runnable
• A loop tries acquiring required

of permits by polling queue

Trigger the DeferredResult to
return to the locks list to client

Runnable getRunnable(int permits,
 ArrayBlockingQueue<Lock>
 availLocks,
 DeferredResult<List<Lock>>
 result) {
 return () -> {
 var locks = new ArrayList
 <Lock>(permits);
 while (tryAcquire
 (availLocks, locks)
 != permits)
 continue;
 result.setResult(locks);
 }
}

32

The ArrayBlockingQueue Semaphore Algorithm
• Async Acquire Operation (2)
• Create a DeferredResult object
• A Runnable task is submitted to

AsyncTaskExecutor to acquire
the specified # of permits

• Return after submitting the
acquisition task

DeferredResult<List<Lock>> acquire
 (LockManager lockManager,
 int permits) {
 var result = new DeferredResult
 <List<Lock>>();
 ...

 mExecutor.submit
 (getRunnable(permits,
 availableLocks,
 result));
 ...

 return result;
}

The HTTP worker thread can be recycled after acquire() returns

33

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (1)
• When a lock is released, the

release() method tries to put
the Lock object back into the
ArrayBlockingQueue

Boolean release
 (LockManager lockManager) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else
 return availableLocks
 .offer(lock);
}

34

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (1)
• When a lock is released, the

release() method tries to put
the Lock object back into the
ArrayBlockingQueue

Boolean release
 (LockManager lockManager) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else
 return availableLocks
 .offer(lock);
}

Get the ArrayBlockingQueue
associated with the LockManager

35

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (1)
• When a lock is released, the

release() method tries to put
the Lock object back into the
ArrayBlockingQueue

Boolean release
 (LockManager lockManager) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else
 return availableLocks
 .offer(lock);
}

This operation is non-blocking &
immediately returns a Boolean

indicating whether the Lock was
successfully returned to the queue

36

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (2)
• release() also supports releasing

multiple locks at once

Boolean release
 (LockManager lockManager,
 List<Lock> locks) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else {
 return locks
 .stream()
 .allMatch
 (availableLocks::offer);
 } ...

37

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (2)
• release() also supports releasing

multiple locks at once

Boolean release
 (LockManager lockManager,
 List<Lock> locks) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else {
 return locks
 .stream()
 .allMatch
 (availableLocks::offer);
 } ...

Get the ArrayBlockingQueue
associated with the LockManager

38

The ArrayBlockingQueue Semaphore Algorithm
• Release Operation (2)
• release() also supports releasing

multiple locks at once

Boolean release
 (LockManager lockManager,
 List<Lock> locks) {
 var availableLocks =
 mLockManagerMap
 .get(lockManager);

 if (availableLocks == null)
 return false;
 else {
 return locks
 .stream()
 .allMatch
 (availableLocks::offer);
 } ...

Iterate thru the Lock object
List, trying to return each one
to the queue without blocking

39

End of the LockManager App
Case Study: Server Structure

& Functionality (Part 3)

