
The LockManager App Case Study:
Overview

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how to use Spring WebMVC to send/receive HTTP POST requests
synchronously to/from a microservice that provides a distributed semaphore

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

Synchronous
HTTP POST
requests/
responses

LockManagerTest LockManagerApplication

LockManager
Controller

LockManager
Service

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

3

Overview of the Lock
Manager App Case Study

4

Overview of the LockManager App Case Study
• This case study shows how to use Spring WebMVC to send/receive HTTP

POST requests synchronously to/from a LockManager microservice

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

LockManagerApplication

Synchronous
HTTP POST
requests/
responses

LockManagerTest

LockManager
Controller

LockManager
Service

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

5

LockManagerTest

Overview of the LockManager App Case Study
• This case study shows how to use Spring WebMVC to send/receive HTTP

POST requests synchronously to/from a LockManager microservice

The client synchronously acquires
& releases remotely managed

locks individually or in bulk using
the declarative LockAPI interface

See WebMVC/ex5/src/test/java/edu/vandy/lockmanager/LockManagerTests.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/test/java/edu/vandy/lockmanager/LockManagerTests.java

6

Overview of the LockManager App Case Study
• This case study shows how to use Spring WebMVC to send/receive HTTP

POST requests synchronously to/from a LockManager microservice

The server (microservice) acquires &
releases locks individually or in bulk

See WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server

LockManagerApplication

LockManager
Controller

LockManager
Service

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server

7

Overview of the LockManager App Case Study
• This case study shows how to use Spring WebMVC to send/receive HTTP

POST requests synchronously to/from a LockManager microservice

LockManagerController converts all
HTTP POST requests into standard or
user-defined Java types & forwards
them to the LockManagerService

See WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server/LockManagerController.java

LockManagerApplication

LockManager
Controller

LockManager
Service

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server/LockManagerController.java

8

Overview of the LockManager App Case Study
• This case study shows how to use Spring WebMVC to send/receive HTTP

POST requests synchronously to/from a LockManager microservice

See WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server/LockManagerService.java

The LockManagerService uses an Array
BlockingQueue object & virtual threads
to implement a distributed semaphore

LockManagerApplication

LockManager
Controller

LockManager
Service

https://github.com/douglascraigschmidt/LiveLessons/blob/master/WebMVC/ex5/src/main/java/edu/vandy/lockmanager/server/LockManagerService.java

9

Structure of the Lock
Manager App Project

10

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex5

11

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• main
• server
• Contains the “app” entry point,

the controller, & the service

12

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• main
• server
• Contains the “app” entry point,

the controller, & the service
• This implementation sends/receives

a range of standard & user-defined
Java types

13

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• main
• server
• common
• Consolidates various project-

specific helper classes
• e.g., user-defined types like

Lock & LockManager passed
between client & server

14

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• main
• server
• common
• utils
• General-purpose utilities
• e.g., log output & generate

unique ids

15

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• main
• server
• common
• utils
• resources
• Defines various application properties
• e.g., name & port number

16

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• This test driver initiates synchronous

calls to the LockManager microservice

17

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• This test driver initiates synchronous

calls to the LockManager microservice
• Java parallel streams are

used to emulate multiple
concurrent clients

18

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• client
• Sends/receives HTTP POST requests to

LockManager microservice synchronously

Synchronous
HTTP POST
requests/
responses

LockManager
Controller

LockManager
Service

19

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• client
• Sends/receives HTTP POST requests to

LockManager microservice synchronously
• HTTP POST requests are used since

the server’s state is modified

See www.baeldung.com/cs/http-get-vs-post

HTTP POST request

HTTP POST request

HTTP POST

http://www.baeldung.com/cs/http-get-vs-post

20

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• client
• Sends/receives HTTP POST requests to

LockManager microservice synchronously
• HTTP POST requests are used since

the server’s state is modified
• Declarative HTTP interface features in Spring

6 are also used to automate proxy generation

See www.baeldung.com/spring-6-http-interface

https://www.baeldung.com/spring-6-http-interface

21

Structure of the LockManager App Project
• The LockManager App project source code

is organized into several packages
• test
• LockManagerTest
• client
• resources
• Enables/disables verbose Spring

logging
logging.level.root=OFF
logging.level.org.springframework.web=OFF
logging.level.org.hibernate=OFF

22

Pros & Cons of the
LockManager App

23

Pros & Cons of the LockManager App
• Pros
• Spring’s DeferredRequest mechanism avoids blocking the servlet thread

Can improve system scalability in traditional (i.e., pre-JDK 19) Java execution environments

24

Pros & Cons of the LockManager App
• Pros
• Spring’s DeferredRequest mechanism avoids blocking the servlet thread
• The “servlet thread” is commonly known as an “HTTP worker thread”

See www.stefankreidel.io/blog/spring-webmvc-servlet-threading

http://www.stefankreidel.io/blog/spring-webmvc-servlet-threading

25See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

Pros & Cons of the LockManager App
• Pros
• Spring’s DeferredRequest mechanism avoids blocking the servlet thread
• Clever (largely) lock-free semaphore algorithm avoids knowing synchronizers

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ArrayBlockingQueue.html

26

Pros & Cons of the LockManager App
• Pros
• Spring’s DeferredRequest mechanism avoids blocking the servlet thread
• Clever (largely) lock-free semaphore algorithm avoids knowing synchronizers
• However, my videos describing Java synchronizers are available online

See www.youtube.com/playlist?list=PLZ9NgFYEMxp59VZ369_XQBD0MRiifJedm

http://www.youtube.com/playlist?list=PLZ9NgFYEMxp59VZ369_XQBD0MRiifJedm

27

Pros & Cons of the LockManager App
• Pros
• Spring’s DeferredRequest mechanism avoids blocking the servlet thread
• Clever (largely) lock-free semaphore algorithm avoids knowing synchronizers
• The client uses declarative Spring 6 HTTP interface synchronous proxies

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface

28

Pros & Cons of the LockManager App
• Cons
• The client isn’t actually asynchronous, only the server

As a result, client threads may block, which can cause timeout problems

29

Pros & Cons of the LockManager App
• Cons
• The client isn’t actually asynchronous, only the server
• The server uses the Spring WebMVC thread pool model

This pool defaults to a fixed number of traditional Java threads

30

Pros & Cons of the LockManager App
• Cons
• The client isn’t actually asynchronous, only the server
• The server uses the Spring WebMVC thread pool model
• This design doesn’t take full advantage of Java virtual threads

We address this issue in upcoming Spring case studies

31

Pros & Cons of the LockManager App
• Cons
• The client isn’t actually asynchronous, only the server
• The server uses the Spring WebMVC thread pool model
• The ArrayBlockingQueue implementation is not optimal

There are far more optimal ways of implementing a distributed semaphore!!

32

Pros & Cons of the LockManager App
• Cons
• The client isn’t actually asynchronous, only the server
• The server uses the Spring WebMVC thread pool mode
• The ArrayBlockingQueue implementation is not optimal

We’ll address some limitations later by using WebFlux & Java virtual threads

33

End of the LockManager
App Case Study: Overview

