
The MathServices App Case Study:
Overview

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how various Java concurrency frameworks are applied in a case

study using Spring WebMVC to perform a pair of math services

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3

MathServicesDriver

Primality
Service

PrimalityApplication
Primality
Controller

Synchronous
HTTP GET
requests/
responses

GCDApplication
GCD

Controller
GCD
Service

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3

3

Overview of the Math
Services App Case Study

4

Overview of the MathServices App Case Study
• This case study shows how to use Spring WebMVC to send & receive HTTP

GET requests synchronously to/from parallel clients & multiple microservices

MathServicesDriver

Primality
Service

PrimalityApplication
Primality
Controller

Three Java concurrency models are applied in this case study

Synchronous
HTTP GET
requests/
responses

GCDApplication
GCD

Controller
GCD
Service

5

Overview of the MathServices App Case Study
• This case study shows how to use Spring WebMVC to send & receive HTTP

GET requests synchronously to/from parallel clients & multiple microservices

The client sends requests
in parallel using Java

structured concurrency
(StructuredTaskScope)

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3/client

MathServicesDriver

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3/client

6

Overview of the MathServices App Case Study
• This case study shows how to use Spring WebMVC to send & receive HTTP

GET requests synchronously to/from parallel clients & multiple microservices

Two microservices receive requests in
bulk & process them in parallel using
Java structured concurrency (Thread
PerTaskExecutor) & parallel streams

GCDApplication
GCD

Controller
GCD
Service

Primality
Service

PrimalityApplication
Primality
Controller

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3/server

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3/server

7

Structure of the
MathServices App Project

8

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebMVC/ex3

9

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• main
• microservices
• Contains the “app” entry points,

the controllers, & the services
implementation strategies
• Showcases both Java structured

concurrency (ThreadPerTaskExecutor)
& Java parallel streams

10

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• main
• microservices
• common
• Consolidates various project-

specific helper classes

11

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• main
• microservices
• common
• utils
• Consolidates various reusable

helper classes

12

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• main
• microservices
• common
• utils
• resources
• Defines various application properties
• e.g., microservice names & port numbers

13

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• client
• MathServicesDriver
• This test driver causes the client to

send/receive requests/responses to/from
the microservices running on the server
& displays the results
• Showcases Java structured concurrency

(StructuredTaskScope)

14

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• client
• MathServicesDriver
• client
• Sends HTTP GET requests to the

server using various Java frameworks

15

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• client
• MathServicesDriver
• client
• common
• Consolidates various project-

specific helper classes

These helper classes should be factored into a separate module

16

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• client
• MathServicesDriver
• client
• common
• utils
• Consolidates various reusable

helper classes

17

Structure of the MathServices App Project
• The MathServices App project source code

is organized into several modules & packages
• client
• MathServicesDriver
• client
• common
• utils
• resources
• Defines various application properties
• e.g., disable/enable logging

18

Pros & Cons of the
MathServices App

19

Pros & Cons of the MathServices App
• Pros
• Each microservice runs in its own process (& potentially its own computer

in a data center or cloud environment)

Can improve system scalability & reliability

20

Pros & Cons of the MathServices App
• Cons
• Client(s) must be explicitly programmed to connect & communicate with

each microservice explicitly

HTTP GET
requests/
responses

Complicates configuration, deployment, testing, & security

21

End of the MathServices
App Case Study: Overview

