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Learning Objectives in this Part of the Lesson
• Understand the capabilities of 

the ParallelFlux class
• Recognize how Scheduler operators

are used with ParallelFlux
• These operators provide the

context to run other operators 
in designated threads & thread 
pools
• e.g., Schedulers.boundedElastic()

These operators also work with the Flux & Mono classes
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Key Scheduler Operators 
for Project Reactor 

Reactive Types



4See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic 

• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler 
       boundedElastic()

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler 
       boundedElastic()

i.e., threads can be dynamically 
added or removed from the pool



6See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html 

• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks

Key Scheduler Operators for Project Reactor Reactive Types

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• i.e., I/O-bound tasks not 

compute-/CPU-bound tasks!

Key Scheduler Operators for Project Reactor Reactive Types

I/O bound tasks can benefit from more threads, where CPU-bound tasks can’t
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache

Key Scheduler Operators for Project Reactor Reactive Types
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache

Key Scheduler Operators for Project Reactor Reactive Types

The underlying threads can be evicted if idle for more than 60 seconds
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The goal is to maximally utilize the CPU cores

Key Scheduler Operators for Project Reactor Reactive Types
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The max # of created threads is bounded by a cap
• By default, this # is ten times the # of available CPU cores

Key Scheduler Operators for Project Reactor Reactive Types
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The max # of created threads is bounded by a cap
• The max # of task submissions enqueued & deferred on each of 

these backing threads is also bounded 
• By default, 100K additional tasks

Key Scheduler Operators for Project Reactor Reactive Types
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Used for making network calls, file 

I/O, database operations, etc.

Key Scheduler Operators for Project Reactor Reactive Types
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

e.g., download images from 
remote web servers in parallel & 
store them on the local computer

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5 

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Used for making network calls, file 

I/O, database operations, etc.
• Implemented via “daemon threads” 
• i.e., won’t prevent the app from 

exiting even if its work isn’t done

See www.baeldung.com/java-daemon-thread

Key Scheduler Operators for Project Reactor Reactive Types

http://www.baeldung.com/java-daemon-thread
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Used for making network calls, file 

I/O, database operations, etc.
• Implemented via “daemon threads” 
• The Schedulers.io() operator in 

RxJava is similar

Key Scheduler Operators for Project Reactor Reactive Types

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#io 

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Used for making network calls, file 

I/O, database operations, etc.
• Implemented via “daemon threads” 
• The Schedulers.io() operator in 

RxJava is similar
• The Java common fork-join pool is also similar 

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool 

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
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• The Schedulers.boundedElastic() 
operator
• Dynamically creates a bounded # 

of ExecutorService-based workers
• Used for making network calls, file 

I/O, database operations, etc.
• Implemented via “daemon threads” 
• The Schedulers.io() operator in 

RxJava is similar
• The Java common fork-join pool is also similar 
• Especially when used with the ManagedBlocker mechanism..

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
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Programming with 
Schedulers.boundedElastic()
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5 

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Create a Flux containing URLs to 
download from remote web servers
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Convert the Flux 
into a ParallelFlux
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlux.html#runOn

Designate the I/O Scheduler that will 
download & store each image in parallel

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Download & store 
images in parallel
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Merge the values from each 'rail' in 
a round-robin fashion & expose it 

as a regular Flux sequence
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Collect the Flux into a List
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• Download images from remote web 
servers in parallel & store them on 
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
  .getUrlFlux()

  .parallel()

  .runOn(Schedulers
         .boundedElastic())

  .map(downloadAndStoreImage)

  .sequential() 

  .collectList()

  .doOnSuccess(...)

Handle the final ‘reduced’ results
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End of Key Scheduler 
Operators for Project Reactor 

Reactive Types (Part 3)


