
Key Scheduler Operators for Project
Reactor Reactive Types (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the ParallelFlux class
• Recognize how Scheduler operators

are used with ParallelFlux
• These operators provide the

context to run other operators
in designated threads & thread
pools
• e.g., Schedulers.boundedElastic()

These operators also work with the Flux & Mono classes

3

Key Scheduler Operators
for Project Reactor

Reactive Types

4See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler
 boundedElastic()

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

5

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler
 boundedElastic()

i.e., threads can be dynamically
added or removed from the pool

6See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks

Key Scheduler Operators for Project Reactor Reactive Types

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

7

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• i.e., I/O-bound tasks not

compute-/CPU-bound tasks!

Key Scheduler Operators for Project Reactor Reactive Types

I/O bound tasks can benefit from more threads, where CPU-bound tasks can’t

8

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache

Key Scheduler Operators for Project Reactor Reactive Types

9

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache

Key Scheduler Operators for Project Reactor Reactive Types

The underlying threads can be evicted if idle for more than 60 seconds

10

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The goal is to maximally utilize the CPU cores

Key Scheduler Operators for Project Reactor Reactive Types

11

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The max # of created threads is bounded by a cap
• By default, this # is ten times the # of available CPU cores

Key Scheduler Operators for Project Reactor Reactive Types

12

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking tasks
• Either starts a new thread or reuses an idle one from a cache
• The max # of created threads is bounded by a cap
• The max # of task submissions enqueued & deferred on each of

these backing threads is also bounded
• By default, 100K additional tasks

Key Scheduler Operators for Project Reactor Reactive Types

13

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Used for making network calls, file

I/O, database operations, etc.

Key Scheduler Operators for Project Reactor Reactive Types
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

e.g., download images from
remote web servers in parallel &
store them on the local computer

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

14

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Used for making network calls, file

I/O, database operations, etc.
• Implemented via “daemon threads”
• i.e., won’t prevent the app from

exiting even if its work isn’t done

See www.baeldung.com/java-daemon-thread

Key Scheduler Operators for Project Reactor Reactive Types

http://www.baeldung.com/java-daemon-thread

15

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Used for making network calls, file

I/O, database operations, etc.
• Implemented via “daemon threads”
• The Schedulers.io() operator in

RxJava is similar

Key Scheduler Operators for Project Reactor Reactive Types

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#io

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

16

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Used for making network calls, file

I/O, database operations, etc.
• Implemented via “daemon threads”
• The Schedulers.io() operator in

RxJava is similar
• The Java common fork-join pool is also similar

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

17

• The Schedulers.boundedElastic()
operator
• Dynamically creates a bounded #

of ExecutorService-based workers
• Used for making network calls, file

I/O, database operations, etc.
• Implemented via “daemon threads”
• The Schedulers.io() operator in

RxJava is similar
• The Java common fork-join pool is also similar
• Especially when used with the ManagedBlocker mechanism..

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

18

Programming with
Schedulers.boundedElastic()

19

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

20

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Create a Flux containing URLs to
download from remote web servers

21

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Convert the Flux
into a ParallelFlux

22

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlux.html#runOn

Designate the I/O Scheduler that will
download & store each image in parallel

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

23

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Download & store
images in parallel

24

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Merge the values from each 'rail' in
a round-robin fashion & expose it

as a regular Flux sequence

25

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Collect the Flux into a List

26

• Download images from remote web
servers in parallel & store them on
the local computer

Programming with Schedulers.boundedElastic()
return Options.instance()
 .getUrlFlux()

 .parallel()

 .runOn(Schedulers
 .boundedElastic())

 .map(downloadAndStoreImage)

 .sequential()

 .collectList()

 .doOnSuccess(...)

Handle the final ‘reduced’ results

27

End of Key Scheduler
Operators for Project Reactor

Reactive Types (Part 3)

