
Overview of the ParallelFlux Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the ParallelFlux class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

3

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the ParallelFlux class
• Simplifies parallel processing cf.

the flatMap() concurrency idiom

See earlier lesson on “Key Transforming Operators in the Flux Class (Part 3)”

return Flux
 .fromArray(bigFractionArray)
 .parallel()
 .runOn(Schedulers.parallel())
 .map(bf -> bf.multiply(sBigReducedFrac))
 .reduce(BigFraction::add)

return Flux
 .fromArray(bigFractionArray)
 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFraction))
 .subscribeOn(Schedulers
 .parallel()))
 .reduce(BigFraction::add)...

4

Overview of the
ParallelFlux Class

5

• The Project Reactor flatMap()
concurrency idiom performs well,
but is also somewhat convoluted..

Overview of the ParallelFlux Class

See previous lessons on “Key Transforming Operators in the Flux Class (Part 3)”

Return a Flux that emits multiplied
BigFraction objects via the Project

Reactor flatMap() concurrency idiom

return Flux
 .fromArray(bigFractionArray)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn(Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

6

• The Project Reactor flatMap()
concurrency idiom performs well,
but is also somewhat convoluted..
• Particularly in comparison with

Java parallel streams

Overview of the ParallelFlux Class

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

return Stream
 .of(bigFractionArray)

 .parallel()

 .map(bf -> bf
 .multiply(sBigFraction))

 .reduce(ZERO, BigFraction::add)

return Flux
 .fromArray(bigFractionArray)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn(Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

7

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel

Overview of the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

8See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams

Overview of the ParallelFlux Class

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

9

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• i.e., intended for “embarrassingly

parallel” tasks

Overview of the ParallelFlux Class

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel

10See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom

Overview of the ParallelFlux Class

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

11

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flux.parallel() factory method

creates a ParallelFlux

Overview of the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#parallel

ParallelFlux<T> parallel()

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

12

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flux.parallel() factory method

creates a ParallelFlux
• Elements are processed in parallel

via ‘rails’ in round-robin order

Overview of the ParallelFlux Class
ParallelFlux<T> parallel()

13

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flux.parallel() factory method

creates a ParallelFlux
• Elements are processed in parallel

via ‘rails’ in round-robin order
• By default, the # of rails is set to the # of available CPU cores

Overview of the ParallelFlux Class

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

14

• ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flux.parallel() factory method

creates a ParallelFlux
• Elements are processed in parallel

via ‘rails’ in round-robin order
• By default, the # of rails is set to the # of available CPU cores
• This setting can be changed programmatically

Overview of the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

15

Key Operators in the
ParallelFlux Class

16

• ParallelFlux supports a subset of
Flux operators that process elements
in parallel across the rails
• e.g., map(), filter(), concatMap(),

flatMap(), collect(), & reduce()

Key Operators in the ParallelFlux Class

See www.vinsguru.com/reactor-parallel-flux

https://www.vinsguru.com/reactor-parallel-flux/

17

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements

Key Operators in the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#runOn

ParallelFlux<T> runOn(Scheduler
 scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

18See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements
• Specified via a Scheduler that

performs no work-stealing

Key Operators in the ParallelFlux Class
ParallelFlux<T> runOn(Scheduler
 scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

19

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements
• Specified via a Scheduler that

performs no work-stealing
• Returns the new Parallel

Flux instance

Key Operators in the ParallelFlux Class
ParallelFlux<T> runOn(Scheduler
 scheduler)

ParallelFlux

20

• A ParallelFlux can be converted
back into a Flux via sequential()

Key Operators in the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#sequential

Flux<T> sequential()

ParallelFlux

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

21

• A ParallelFlux can be converted
back into a Flux via sequential()
• Merge the values from each 'rail’

in a round-robin fashion

Key Operators in the ParallelFlux Class
Flux<T> sequential()

ParallelFlux

22

• ParallelFlux.reduce() can also be
used to convert back into a Mono

Key Operators in the ParallelFlux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

23

• ParallelFlux.reduce() can also be
used to convert back into a Mono
• Reduces all values within a 'rail’ &

across 'rails' into a single sequential
value

Key Operators in the ParallelFlux Class
Mono<T> reduce
 (BiFunction<T,T,T> reducer)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

24

• ParallelFlux.reduce() can also be
used to convert back into a Mono
• Reduces all values within a 'rail’ &

across 'rails' into a single sequential
value

• The BiFunction param reduces two
values into one successively

Key Operators in the ParallelFlux Class

See docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

Mono<T> reduce
 (BiFunction<T,T,T> reducer)

https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html?is-external=true

25

• ParallelFlux.reduce() can also be
used to convert back into a Mono
• Reduces all values within a 'rail’ &

across 'rails' into a single sequential
value

• The BiFunction param reduces two
values into one successively

• Return a Mono that emits the reduced
value or empty if the ParallelFlux was
empty

Key Operators in the ParallelFlux Class
Mono<T> reduce
 (BiFunction<T,T,T> reducer)

26

• Elements that flow through the
operators in a ParallelFlux stream
are processed in parallel

Key Operators in the ParallelFlux Class

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

return Flux
 .fromArray(bigFractionArray)

 .parallel()

 .runOn
 (Schedulers.parallel())

 .map(bf -> bf
 .multiply(sBigReducedFrac))

 .reduce(BigFraction::add)

 .doOnSuccess(displayResults)

 .then();

Multiply an array of BigFraction
objects in parallel using Project
Reactor’s ParallelFlux operators

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

27

• Elements that flow through the
operators in a ParallelFlux stream
are processed in parallel

Key Operators in the ParallelFlux Class
return Flux
 .fromArray(bigFractionArray)

 .parallel()

 .runOn
 (Schedulers.parallel())

 .map(bf -> bf
 .multiply(sBigReducedFrac))

 .reduce(BigFraction::add)

 .doOnSuccess(displayResults)

 .then();

Designate the parallel Scheduler that
multiplies each BigFraction in parallel

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

37

End of Overview of the
ParallelFlux Class

