Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

’ UnderStand the Capabllltles Of public abstract class ParallelFlux<T>
the ParallelFlux class extends Object

implements CorePublisher<T>

A ParallelFlux publishes to an array of Subscribers, in parallel 'rails' (or
'groups').

Use from(org.reactivestreams.Publisher<? extends T>) to start
processing a regular Publisher in 'rails', which each cover a subset of the
original Publisher's data. Flux.parallel () is a convenient shortcut to
achieve that on a Flux.

Use runOn(reactor.core.scheduler.Scheduler) to introduce where
each 'rail' should run on thread-wise.

Use sequential () to merge the sources back into a single Flux.

Use then () to listen for all rails termination in the produced Mono

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Learning Objectives in this Part of the Lesson

« Understand the capabilities of ﬁ»/""’/"’“f' 'ﬁ\
the ParallelFlux class ceturn Flux @&Q_‘_&_ﬁj&w

« Simplifies parallel processing cf. .fromArray (bigFractionArray)

the flatMap() concurrency idiom .flatMap (bf -> Mono
.fromCallable(() -> bf

.multiply (sBigFraction))

\sampiﬂ .subscribeOn (?;]:i:;li:;s() .

.reduce (BigFraction: :add) ...

return Flux
.fromArray (bigFractionArray)
.parallel ()
.runOn (Schedulers.parallel ())
.map (bf -> bf.multiply (sBigReducedFrac))
.reduce (BigFraction: :add)

See earlier lesson on "Key Transforming Operators in the Flux Class (Part 3)”

Overview of the
ParallelFlux Class

Overview of the ParallelFlux Class

« The Project Reactor flatMap() return Flux
concurrency idiom performs well, .fromArray (bigFractionArray)
but is also somewhat convoluted..

.flatMap (bf -> Mono
.fromCallable(() -> bf

.multiply (sBigFraction))

.subscribeOn (Schedulers
.parallel()))

Return a Flux that emits multiplied
BigFraction objects via the Project
Reactor flatMap() concurrency idiom

.reduce (BigFraction: :add)

See previous lessons on "Key Transforming Operators in the Flux Class (Part 3)”

Overview of the ParallelFlux Class

» The Project Reactor flatMap()
concurrency idiom performs well,
but is also somewhat convoluted..

« Particularly in comparison with
Java parallel streams

return Stream
.of (bigFractionArray)

.parallel ()

.map (bf -> bf
.multiply (sBigFraction))

.reduce (ZERO, BigFraction: :add)

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of the ParallelFlux Class
 ParallelFlux is a subset of Flux that e ~

provides a more concise means of -‘ O . |

processing multiple values in parallel | | : :
L () : /\ |
AR H

0 Q+

i ParaIIeIFqu<O> :

5 :::/

sequential()

sss::::ii‘i‘

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Overview of the ParallelFlux Class

 ParallelFlux is a subset of Flux that
provides a more concise means of HEONNE.---O

processing multiple values in parallel ';'é"\r'j"i'f'ii";fg"ii':é“
« Similar to Java parallel streams
Wl

map(this:.downloadlmage)

EEVE

flatMap(this::applyFilters)
@ i il
1] i1
1 1] 11

See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

Overview of the ParallelFlux Class

« ParallelFlux is a subset of Flux that

prowdes a more concise

processing multiple values in parallel
 Similar to Java parallel streams
* i.e., intended for “embarrassingly

parallel” tasks

means of

"Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

See en.wiki

pedia.org/wiki/Embarrassingly

parallel

http://en.wikipedia.org/wiki/Embarrassingly_parallel

Overview of the ParallelFlux Class

 ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel

« Avoids the convoluted syntax of
the flatMap() concurrency idiom A* o B

See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

Overview of the ParallelFlux Class

» ParallelFlux is a subset of Flux that ParallelFlux<T> parallel()
provides a more concise means of —~
processing multiple values in parallel ‘ b Oz .5 .5 | ’
v Y VvV VvV VY

parallel (parallelism =2)

 The Flux.parallel() factory method O O O >
creates a ParallelFlux v v v
O O >

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of the ParallelFlux Class

» ParallelFlux is a subset of Flux that ParallelFlux<T> parallel()
provides a more concise means of —~
processing multiple values in parallel ‘ b Oz .5 .5 | ’
v Y VvV VvV VY

parallel (parallelism =2)

« The Flux.parallel() factory method
creates a ParallelFlux

» Elements are processed in parallel
via 'rails’ in round-robin order

12

Overview of the ParallelFlux Class

 ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel

« The Flux.parallel() factory method
creates a ParallelFlux

» By default, the # of rails is set to the # of available CPU cores

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

Overview of the ParallelFlux Class

 ParallelFlux is a subset of Flux that
provides a more concise means of
processing multiple values in parallel

parallel

public final ParallelFlux<T> parallel(int parallelism)

Prepare this F1ux by dividing data on a number of 'rails' matching the
provided parallelism parameter, in a round-robin fashion. Note
that to actually perform the work in parallel, you should call
ParallelFlux.runOn(Scheduler) afterward.

« The Flux.parallel() factory method
creates a ParallelFlux

» By default, the # of rails is set to the # of available CPU cores
 This setting can be changed programmatically

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Operators in the
ParallelFlux Class

15

Key Operators in the ParallelFlux Class

« ParallelFlux supports a subset of Y e
Flux operators that process elements \
in parallel across the rails

« e.g., map(), filter(), concatMap(),
flatMap(), collect(), & reduce()

See www.vinsguru.com/reactor-parallel-flux

https://www.vinsguru.com/reactor-parallel-flux/

Key Operators in the ParallelFlux Class

« The runOn() operator specifies ParallelFlux<T> runOn(Scheduler
where each 'rail' will observe its scheduler)
incoming elements

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#runOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Key Operators in the ParallelFlux Class

« The runOn() operator specifies ParallelFlux<T> runOn(Scheduler
where each 'rail' will observe its scheduler)
incoming elements

 Specified via a Scheduler that
performs no work-stealing

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

Key Operators in the ParallelFlux Class

« The runOn() operator specifies ParallelFlux<T> runOn (Scheduler
where each 'rail' will observe its scheduler)
incoming elements

e Returns the new Parallel
Flux instance

19

Key Operators in the ParallelFlux Class

A ParallelFlux can be converted Flux<T> sequential ()
back into a Flux via sequential()

% Q ® -
| 0 0+

ParaIIeIFqu<O> :

. 5::/

¢¢;¢¢+;¢uu

sequential

T T R

See projectreadtor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#sequential

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Key Operators in the ParallelFlux Class

A ParallelFlux can be converted
back into a Flux via sequential()

« Merge the values from each 'rail’
in @ round-robin fashion

Flux<T> sequential ()

\

p
O—0O0—0—+
E <:> i /“\ : ""]

' 0 0+
L ParaIIeIFqu<O> : ; i::/
BERREEEEY

sequential

T T R

21

Key Operators in the ParallelFlux Class

 ParallelFlux.reduce() can also be
used to convert back into a Mono

reduce

public final Mono<T> reduce(BiFunction<T,T,T> reducer)

Reduces all values within a 'rail' and across 'rails' with a reducer
function into a single sequential value.

Note that the same reducer function may be called from multiple
threads concurrently.

Parameters:
reducer - the function to reduce two values into one.

Returns:

the new Mono instance emitting the reduced value or empty if the
ParallelFlux was empty

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Key Operators in the ParallelFlux Class

» ParallelFlux.reduce() can also be Mono<T> reduce
used to convert back into a Mono (BiFunction<T,T,T> reducer)

» Reduces all values within a 'rail” &
across 'rails' into a single sequential
value

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Key Operators in the ParallelFlux Class

» ParallelFlux.reduce() can also be Mono<T> reduce
used to convert back into a Mono (BiFunction<T,T,T> reducer)
@Functionallnterface

public interface BiFunction<T,U,R>

Represents a function that accepts two arguments and
produces a result. This is the two-arity specialization of

« The BiFunction param reduces two Function.

Values |nt0 one succeSSively This is a functional interface whose functional method is
apply(Object, Object).

See docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html?is-external=true

Key Operators in the ParallelFlux Class

» ParallelFlux.reduce() can also be Mono<T> reduce
used to convert back into a Mono (BiFunction<T,T,T> reducer)

« Return a Mono that emits the reduced
value or empty if the ParallelFlux was

empty

25

Key Operators in the ParallelFlux Class

 Elements that flow through the return Flux
operators in a ParallelFlux stream . fromArray (bigFractionArray)
are processed in parallel .parallel ()
.runOn

(Schedulers.parallel())
.map (bf -> bf

Multiply an array of BigFraction .multiply (sBigReducedFrac))

objects in parallel using Project .reduce (BigFraction: :add)

Reactors ParallelFlux operators _doOnSuccess (displayResults)
.then () ;

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

Key Operators in the ParallelFlux Class

 Elements that flow through the return Flux
operators in a ParallelFlux stream . fromArray (bigFractionArray)
are processed in parallel .parallel ()
.runOn

(Schedulers.parallel())
.map (bf -> bf

Designate the parallel Scheduler that -multiply (sBigReducedFrac))
multiplies each BigFraction in paralle/ .reduce (BigFraction: :add)

.doOnSuccess (displayResults)
.then () ;

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html# parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

End of Overview of the
ParallelFlux Class

37

