Key Error Handling Operators

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators

 Error handling operators

« These operators handle
errors that occur in a Flux
chain

* e.g., onErrorContinue(),
onErrorResume(), &
onErrorStop()




Key Error Handling
Operators in the Flux Class




Key Error Handling Operators in the Flux Class
* The onErrorContinue() operator Flux<T> onErrorContinue

. (BiConsumer<Throwable, Object>
» Recovers from errors by dropping
; .. . errorConsumer)
the incriminating element from
the sequence & continuing with
subsequent element

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Hux.html#onErrorContinue



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Error Handling Operators in the Flux Class

« The onErrorContinue() operator Flux<T> onErrorContinue

. (BiConsumer<Throwable, Object>
» Recovers from errors by dropping
; .. . errorConsumer)
the incriminating element from
the sequence & COﬂtIﬂUIﬂg with Interface BiConsumer<T,U>
subsequent element
Type Parameters:

* The param IS d BICOI’lsumer that T - the type of the first argument to the operation
|S fEd W|th errors matCh|ng the U - the type of the second argument to the operation
predicate & the value that Functional Interface:
trlggered the error This is a functional interface and can therefore be

used as the assignment target for a lambda
expression or method reference.

See docs.oracle.com/javase/8/docs/api/java/util/function/BiConsumer.html



https://docs.oracle.com/javase/8/docs/api/java/util/function/BiConsumer.html?is-external=true

Key Error Handling Operators in the Flux Class

« The onErrorContinue() operator Flux<T> onErrorContinue
. BiConsumer<Throwable, Object>
« Recovers from errors by dropping ( J

; .. . errorConsumer)
the incriminating element from
the sequence & continuing with public class Throwable
extends Object
SUbsequent element implements Serializable

. The pa Fam IS a BiCOﬂSU mer that The Throwable class is the superclass of all errors and
exceptions in the Java language. Only objects that are

is fed Wlth errors matChIng the instances of this class (or one of its subclasses) are thrown by

pl‘edlcate & the Value that the Java Vil"tl.lal. Machine or F:an be thrown by‘ the Java throw
. statement. Similarly, only this class or one of its subclasses
trlggered the error can be the argument type in a catch clause. For the purposes
of compile-time checking of exceptions, Throwable and any
. The type Of the error |S subclass of Throwable that is not also a subclass of either
RuntimeException or Error are regarded as checked
a subclass of Throwable exceptions.

See docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html

Key Error Handling Operators in the Flux Class

* The onErrorContinue() operator Flux<T> onErrorContinue
(BiConsumer<Throwable, Object>

errorConsumer)

» Recovers from errors by dropping
the incriminating element from
the sequence & continuing with
subsequent element

» Returns a Flux that attempts to
continue processing when errors
(exceptions) occur




Key Error Handling Operators in the Flux Class

« The onErrorContinue() operator Q Q Q } >
v R
map(this: :throwIfYellow )
% <@»
H A\Y n v v v
« This operator “swallows” the | »
exception so it won't propagate i i v
up the call chain/stack further onErrorContinue((X. O)—» (O
v v ooy
>

See en.wikipedia.org/wiki/Error hiding



https://en.wikipedia.org/wiki/Error_hiding

Key Error Handling Operators in the Flux Class

« The onErrorContinue() operator Q Q Q } >
v ; v v
map(this::throwlerIIow )
% <@»
H A\Y n v v v
 This operator “swallows” the | —»

exception so it won't propagate
up the call chain/stack further

return Flux : : :
.fromIterable (denominators) y v Y
.map (denominator -> BigFractio: >

.valueOf (Math.abs (sRANDOM.nextInt () ) , denominator))
.onErrorContinue (logErrorAndContinue)

v A
onErrorContinue(( X, O)— {O3)

Continue processing

See Reactive/flux/ex3/src/main/java/FIuxEx.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Error Handling Operators in the Flux Class

 The onErrorContinue() operator Flux
.range(1,5)
.doOnNext (i -> log("i = " + i))
.map(i ->i=2?231i /0 : i)

.map(i -> i * 2)
.onErrorResume (err -> {
log ("resuming") ;

 This operator “swallows” the
return Flux.empty () ;

exception so it won't propagate b
up the call chain/stack further _onErrorContinue ((err, i) ->

It also affects the behavior of / {log("continuing={}", 1i);})

onErrorResume() operators.. reduce (Math: :addExact)
— : .doOnNext (i ->
onErrorResume() is ignored if onError println("sum=" + i))

Continue() appears downstream .block () ;

See devdojo.com/ketonemaniac/reactor-onerrorcontinue-vs-onerrorresume



https://devdojo.com/ketonemaniac/reactor-onerrorcontinue-vs-onerrorresume

Key Error Handling Operators in the Flux Class
* The onErrorContinue() operator

onErrorStop
public final Flux<T> onErrorStop()
If an onE ol e (BiC er) variant has been

used downstream, reverts to the default 'STOP' mode
where errors are terminal events upstream. It can be

 This Operator “swallows” the used for easier scoping of the on next failure strategy or
- - I to override the inherited strategy in a sub-stream (for
except|0n SO It_Wont propagate example in a flatMap). It has no effect if
up the call chain/stack further JnErrorContinue (BiConsumer) has not been used
. d t :
- It also affects the behavior of S
onErrorResume() operators.. Returns:
. . . a Flux that terminates on errors, even if
« See upcoming discussion of - ~rorContinue (BiConsumer) was used downstream

onErrorStop() for a solution

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#onErrorStop



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Error Handling Operators in the Flux Class

* The onErrorContinue() operator

_
«
oo
-

» RxJava’s has no direct equivalent

12



Key Error Handling Operators in the Flux Class
« The onErrorResume() operator Flux<T> onErrorResume

i Function<? super Throwable,
. Subscribe to a returned fallback ( P

blish h ? extends Publisher
publisner wnen any error oCcurs <? extends T>>

fallback)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Hux.html#onErrorResume



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Error Handling Operators in the Flux Class
« The onErrorResume() operator Flux<T> onErrorResume

. Function<? super Throwable,
+ Subscribe to a returned fallback ( e onP e
publisher when any error occurs '

<? extends T>>
« The param is a Function that fallback)
chooses the fallback, depending
on the type of the error

Interface Function<T,R>

Type Parameters:

T - the type of the input to the function
R - the type of the result of the function

All Known Subinterfaces:

UnaryOperator<T>

Functional Interface:

This is a functional interface and can
therefore be used as the assignment target for
a lambda expression or method reference.

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html



https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Key Error Handling Operators in the Flux Class

« The onErrorResume() operator Flux<T> onErrorResume

. Function<? super Throwable,
. Subscribe to a returned fallback ( P

blish h ? extends Publisher
publisner wnen any error oCcurs <? extends T>>

« The param is a Function that fallback)
chooses the fallback, depending )
public class Throwable
on the type of the error extends Object

implements Serializable

* The type Of the €rror 1S The Throwable class is the superclass of all errors and
a su bCIaSS Of Th FOwa ble exceptions in the Java language. Only objects that are

instances of this class (or one of its subclasses) are thrown by
the Java Virtual Machine or can be thrown by the Java throw
statement. Similarly, only this class or one of its subclasses
can be the argument type in a catch clause. For the purposes
of compile-time checking of exceptions, Throwable and any
subclass of Throwable that is not also a subclass of either
RuntimeException or Error are regarded as checked
exceptions.

See docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html

Key Error Handling Operators in the Flux Class

« The onErrorResume() operator Flux<T> onErrorResume

i Function<? super Throwable,
. Subscribe to a returned fallback ( up v

blish h ? extends Publisher
publisner wnen any error oCcurs <? extends T>>

fallback)

« Returns a Flux that falls back
to the publisher when an
onError() occurs

16



Key Error Handling Operators in the Flux Class

« The onErrorResume() operator —QOQ O~
 This operator “swallows” the 5 5 -

exception so it won't propagate Y Y VY. v vy
up the call chain/stack further

See en.wikipedia.org/wiki/Error hiding



https://en.wikipedia.org/wiki/Error_hiding

Key Error Handling Operators in the Flux Class

» The onErrorResume() operator _O_%,
« This operator “swallows” the -1 H R

exception so it won't propagate Y Y VY. v vy

up the call chain/stack further onErrorResume (X — —@- @)
return Flux : : = : =
v
.fromIterable (denominators) Ov Ov .V .V | I
.map (denominator -> BigFraction
.valueOf (Math.abs (sRANDOM.nextInt () ) , denominator))
.onErrorResume (_  -> Flux.empty())
.onErrorStop () _ ) -
colle ctLisEt: () Convert Arithmetic

Exception to empty Flux

See Reactive/flux/ex3/src/main/java/FIuxEx.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Error Handling Operators in the Flux Class

« The onErrorResume() operator — Q- O~
 This operator “swallows” the 5 5 -

exception so it won't propagate A B I B 2
up the call chain/stack further onErrorResume (X — —@- @)
return Flux V V V V V

.fromIterable (denominators) O O . . | ‘
.map (denominator -> BigFraction

.valueOf (Math.abs (sRANDOM.nextInt () ) , denominator))
.onErrorResume (_ -> Flux.empty())

.onErrorStop () —_— ] —— .
.collectList () Stop processing in this Flux

stream when an error occurs

See Reactive/flux/ex3/src/main/java/FIuxEx.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Error Handling Operators in the Flux Class

« The onErrorResume() operator Flux
.range(1,5)
.doOnNext (i -> log("i = " + i))
.map(i ->i=2?231i /0 : i)
 This operator “swallows” the .map (i -> i * 2)
exception so it won't propagate -onErrorResume (err -> {
up the call chain/stack further log ("resuming”) ;
return Flux.empty() ;
« Beware when onErrorResume() })
is used in conjunction with .onErrorContinue ( (err, i) ->
onErrorContinue() {log("continuing={}", i);})
.reduce (Math: :addExact)

.doOnNext (1 ->
println ("sum=" + 1i))
.block() ;

onErrorResume() is ignored if onError
Continue() appears downstream

See devdojo.com/ketonemaniac/reactor-onerrorcontinue-vs-onerrorresume



https://devdojo.com/ketonemaniac/reactor-onerrorcontinue-vs-onerrorresume

Key Error Handling Operators in the Flux Class

» The onErrorResume() operator

 This operator “swallows” the
exception so it won't propagate
up the call chain/stack further

« Beware when onErrorResume()
is used in conjunction with
onErrorContinue()

» See the upcoming discussion

of onErrorStop() for a solution

onErrorStop
public final Flux<T> onErrorStop()
If an onE ol e (E variant has been

used downstream, reverts to the default 'STOP' mode
where errors are terminal events upstream. It can be
used for easier scoping of the on next failure strategy or
to override the inherited strategy in a sub-stream (for
example in a flatMap). It has no effect if

: rCc o (BiConsumer) has not been used
downstream.
Returns:

a Flux that terminates on errors, even if
' 1e(BiC imer) was used downstream

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#onErrorStop



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Error Handling Operators in the Flux Class
» The onErrorResume() operator

* RxJava’s operator Observable
.onErrorResumeNext() works
the same

See readtivex.io/RxJava/3.x/javadoc/io/readivex/rxjava3/core/Observable.ntml#onErrorResumeNext



http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Error Handling Operators in the Flux Class
» The onErrorResume() operator

exceptionally

CompletionStage<T> exceptionally(
Function<Throwable,? extends T> fn)

Returns a new CompletionStage that, when this stage completes
exceptionally, is executed with this stage's exception as the
argument to the supplied function. Otherwise, if this stage
completes normally, then the returned stage also completes
normally with the same value.

Parameters:

fn - the function to use to compute the value of the returned
CompletionStage if this CompletionStage completed exceptionally
Returns:

the new CompletionStage

* The Java CompletableFuture
exceptionally() method is similar

See docs.orade.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.himl#exaeptionally



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Key Error Handling Operators in the Flux Class
« The onErrorStop() operator Flux<T> onErrorStop ()

« If an onErrorContinue() variant is
used downstream, revert to the
default 'STOP' mode where errors
are terminal events upstream

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#onErrorStop



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Error Handling Operators in the Flux Class

« The onErrorStop() operator Flux<T> onErrorStop ()

- If an onErrorContinue() variant is —
used downstream, revert to the
default 'STOP' mode where errors
are terminal events upstream

e Returns a Flux that terminates on
errors, even if onErrorContinue()
was used downstream

{ ¥ "1 (‘\-»' :"* lil;
R il ’5, .;‘f; /l ARy /."

TERMINAT

25



Key Error Handling Operators in the Flux Class

« The onErrorStop() operator return Flux
.fromIterable (denominators)

.map (denominator -> BigFraction
.valueOf (...,
denominator))

« It can be used for easier scoping
of the onNext() failure strategy or
to override the inherited strategy
iIn @ sub-stream _onErrorStop ()

.onErrorResume (__ ->
Flux.empty())

.collectList()

Prevent a downstream onErrorContinue()
from interfering with onErrorResume()

See Reactive/flux/ex3/src/main/java/FIuxEx.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Error Handling Operators in the Flux Class

« The onErrorStop() operator

» It can be used for easier scoping
of the onNext() failure strategy or
to override the inherited strategy

in a sub-stream /

If onErrorContinue() has not been used
downstream onErrorStop() has no effect

/downstream.

onErrorStop
public final Flux<T> onErrorStop()
If an onE ol e (BiC er) variant has been

used downstream, reverts to the default 'STOP' mode
where errors are terminal events upstream. It can be
used for easier scoping of the on next failure strategy or
to override the inherited strategy in a sub-stream (for
example in a flatMap). It has no effect if

e (BiConsumer) has not been used

Returns:

a Flux that terminates on errors, even if
1e(BiC imer) was used downstream

27




Key Error Handling Operators in the Flux Class

« The onErrorStop() operator

* RxJava has no direct equivalent

« Its error handling operators aren't
as complicated as Project Reactor’s!

28



End of Key Error Handling
Operators in the Flux Class

29



