
Key Combining Operators
in the Flux Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operations
• Transforming operators
• Concurrency & scheduler

operators
• Error handling operators
• Combining operators
• These operators create a Flux

from multiple sources or
iterations
• e.g., reduce(), collectList(),

& collect()

3

Key Combining Operators
in the Flux Class

4

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

Mono<U> reduce
(BiFunction<T, T, T> reducer)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param

Mono<U> reduce
(BiFunction<T, T, T> reducer)

See docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html?is-external=true

6

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value

Mono<U> reduce
(BiFunction<T, T, T> reducer)

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

This value is initialized
to zero (0) for Integer

7

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction

Mono<U> reduce
(BiFunction<T, T, T> reducer)

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

8

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Mono<U> reduce
(BiFunction<T, T, T> reducer)

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

9

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

Mono<U> reduce
(BiFunction<T, T, T> reducer)

10

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

Mono<U> reduce
(BiFunction<T, T, T> reducer)

11

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

Mono<U> reduce
(BiFunction<T, T, T> reducer)

12

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

Mono<U> reduce
(BiFunction<T, T, T> reducer)

13

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• The process repeats for each pair of values

Flux of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

Mono<U> reduce
(BiFunction<T, T, T> reducer)

14

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• The result of the reduced Flux is

emitted from the final call as sole
item of a Mono

Mono<U> reduce
(BiFunction<T, T, T> reducer)

15

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• The result of the reduced Flux is

emitted from the final call as sole
item of a Mono
• If the Flux emits no items Mono

will be empty

Mono<U> reduce
(BiFunction<T, T, T> reducer)

16

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items
• Reduction is performed using a

BiFunction param
• The result of the reduced Flux is

emitted from the final call as sole
item of a Mono
• If the Flux emits no items Mono

will be empty
• The internally accumulated value is discarded upon cancellation or error

Mono<U> reduce
(BiFunction<T, T, T> reducer)

17

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
return Flux
 .fromArray(bigFractions)
 .flatMap(bf ->
 multiplyFractions(bf,
 Schedulers.parallel()))
 .reduce(BigFraction::add)
 ...

See Reactive/flux/ex3/src/main/java/FluxEx.java

Sum results of async multiplications

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

18

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
• Sources that are infinite & never

complete will never emit anything
through this operator

19

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
• Sources that are infinite & never

complete will never emit anything
through this operator
• An infinite source may lead to a

fatal OutOfMemoryError

20

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted

• RxJava’s Observable.reduce()
operator works the same

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

return Observable
 .fromArray(bigFractions)
 .flatMap(bf ->
 multiplyFrations(bf, Schedulers.computation()))
 .reduce(BigFraction::add) ...

Sum the results of
async multiplications

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

21

Key Combining Operators in the Flux Class
• The reduce() operator
• Reduce the values from this Flux

sequence into a single object of
the same type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted

• RxJava’s Observable.reduce()
operator works the same

• Similar to the Stream.reduce()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

int result = List
 .of(1, 2, 3, 4, 5, 6).stream()
 .reduce(0, Math::addExact); Sum the #’s together

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

22

Key Combining Operators in the Flux Class
• The collectList() operator
• Collect all elements emitted

by this Flux into a List

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

Mono<List<T>> collectList()

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

23

Key Combining Operators in the Flux Class
• The collectList() operator
• Collect all elements emitted

by this Flux into a List
• Returns a Mono to a List

containing all values from
this Flux

Mono<List<T>> collectList()

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

24

Key Combining Operators in the Flux Class
• The collectList() operator
• Collect all elements emitted

by this Flux into a List
• The list is emitted by the Mono

when this sequence completes

See Reactive/flux/ex3/src/main/java/FluxEx.java

Flux
 .fromIterable
 (bigFractions)
 .flatMap(...)
 .filter(fraction -> fraction.compareTo(0) > 0)
 .collectList()
 ...

Collect the filtered BigFractions into a list

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

25

Key Combining Operators in the Flux Class
• The collectList() operator
• Collect all elements emitted

by this Flux into a List
• The list is emitted by the Mono

when this sequence completes
• RxJava’s Observable.collect() is

a generalization of collectList()

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

Observable
 .fromIterable(bigFractions)
 .flatMap(...)
 .filter(fraction -> fraction.compareTo(0) > 0)
 .collect(toList())
 ... Collect the filtered BigFractions into a list

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

26

Key Combining Operators in the Flux Class
• The collectList() operator
• Collect all elements emitted

by this Flux into a List
• The list is emitted by the Mono

when this sequence completes
• RxJava’s Observable.collect() is

a generalization of collectList()
• Similar to the Stream.toList()

method in Java Streams

See docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/Stream.html#toList()

List<Integer> evenNumbers = List
 .of(1, 2, 2, 3, 4, 5, 6, 6)
 .stream()
 .filter(x -> x % 2 == 0)
 .toList();Collect even #’d

Integers into a List

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/Stream.html

27

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

<R, A> Mono<R> collect
(Collector<? super T,

A,
? extends R> collector)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

28

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container
• The param is the Java Stream

Collector interface
• This interface defines the

supplier(), accumulator(),
combiner(), & finisher()
methods

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

<R, A> Mono<R> collect
(Collector<? super T,

A,
? extends R> collector)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html?is-external=true

29

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container
• The param is the Java Stream

Collector interface
• The collected result is emitted

via a Mono when this sequence
completes

<R, A> Mono<R> collect
(Collector<? super T,

A,
? extends R> collector)

30

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container
• Can be used to seamlessly

integrate Project Reactor &
Java Streams capabilities
return monos -> Mono
 .when(monos)
 .materialize()
 .flatMap(v -> Flux
 .fromIterable(monos)
 .map(Mono::block)
 .collect(toList()));

See Reactive/flux/ex3/src/main/java/utils/MonosCollector.java

Return a Mono to a List
of results that were

computed asynchronously

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/utils/MonosCollector.java

31

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container
• Can be used to seamlessly

integrate Project Reactor &
Java Streams capabilities

• RxJava’s operator Observable.
collect() works the same

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

Observable
 .fromIterable(bigFractions)
 .flatMap(...)
 .filter(fraction -> fraction.compareTo(0) > 0)
 .collect(toList())
 ...

Collect the filtered BigFractions into a list

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

32

Key Combining Operators in the Flux Class
• The collect() operator
• Collect all elements emitted by

this Flux into a container
• Can be used to seamlessly

integrate Project Reactor &
Java Streams capabilities

• RxJava’s operator Observable.
collect() works the same

• Similar to the Stream.collect()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

Set<Integer> evenNumbers = List
 .of(1, 2, 2, 3, 4, 4, 5, 6, 6)
 .stream()
 .filter(x -> x % 2 == 0)
 .collect(toSet());

Collect even #’d Integers into a Set of unique values

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

33

End of Key Combining
Operators in the Flux Class

(Part 2)

