
Key Scheduler Operators for Project
Reactor Reactive Types (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• Transforming operators
• Scheduler operators
• These operators arrange to run

other operators in designated
threads & thread pools
• e.g., Schedulers.parallel()

3

Key Scheduler Operators for
Project Reactor Reactive Types

4

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

static Scheduler
 parallel()

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

5

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Returns a new Scheduler that is

suited for parallel work

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler
 parallel()

6

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Returns a new Scheduler that is

suited for parallel work
• Size obtained by system property

reactor.schedulers.defaultPoolSize

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#DEFAULT_POOL_SIZE

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

7

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Returns a new Scheduler that is

suited for parallel work
• Size obtained by system property

reactor.schedulers.defaultPoolSize
• Falls back to # of processors

available to the runtime on init

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html?is-external=true

8

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Returns a new Scheduler that is

suited for parallel work
• Size obtained by system property

reactor.schedulers.defaultPoolSize
• Optimized for computation-

intensive non-blocking tasks
due to its fixed-size

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

9

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Returns a new Scheduler that is

suited for parallel work
• Size obtained by system property

reactor.schedulers.defaultPoolSize
• Optimized for computation-

intensive non-blocking tasks
due to its fixed-size
• i.e., compute-/CPU-bound

tasks, not I/O-bound tasks!

Key Scheduler Operators for Project Reactor Reactive Types

10

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work

Key Scheduler Operators for Project Reactor Reactive Types
Flux
 .fromIterable(bigFractions)

 .flatMap
 (bf -> Mono
 .fromCallable(() -> bf
 multiply(sBigFrac))

 .subscribeOn
 (Schedulers.parallel()))

 .reduce(BigFraction::add)

See Reactive/flux/ex3/src/main/java/FluxEx.java

Arrange to multiply a List of Big
Integer objects in a background

thread in computation thread pool

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

11

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work

Key Scheduler Operators for Project Reactor Reactive Types

See Reactive/flux/ex3/src/main/java/FluxEx.java

Each BigFraction emitted via from
Callable() is multiplied in parallel

within the computation thread pool

Flux
 .fromIterable(bigFractions)

 .flatMap
 (bf -> Mono
 .fromCallable(() -> bf
 multiply(sBigFrac))

 .subscribeOn
 (Schedulers.parallel()))

 .reduce(BigFraction::add)

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

12

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work

Key Scheduler Operators for Project Reactor Reactive Types
Flux
 .fromIterable(bigFractions)

 .flatMap
 (bf -> Mono
 .fromCallable(() -> bf
 multiply(sBigFrac))

 .subscribeOn
 (Schedulers.parallel()))

 .reduce(BigFraction::add)

fromCallable() is a “lazy” factory method so multiply() runs in the
computation thread pool even though subscribeOn() comes after

13

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work

Key Scheduler Operators for Project Reactor Reactive Types
Flux
 .fromIterable(bigFractions)

 .flatMap
 (bf -> Mono
 .fromCallable(() -> bf
 multiply(sBigFrac))

 .subscribeOn
 (Schedulers.parallel()))

 .reduce(BigFraction::add)

Only one thread runs reduce() after
all other computations are done

14

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work
• Implemented via “daemon threads”
• i.e., won’t prevent the app from

exiting even if its work isn’t done

Key Scheduler Operators for Project Reactor Reactive Types

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

15

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work
• Implemented via “daemon threads”
• RxJava’s Schedulers.computation()

works in a similar way
• i.e., it’s fixed-size & intended for

compute-intensive &
non-blocking tasks

Key Scheduler Operators for Project Reactor Reactive Types

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

16

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work
• Implemented via “daemon threads”
• RxJava’s Schedulers.computation()

works in a similar way
• The Java common fork-join pool is

also similar wrt CPU-bound tasks

Key Scheduler Operators for Project Reactor Reactive Types

See javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

17

• The Schedulers.parallel() operator
• Hosts a fixed pool of single-threaded

ExecutorService-based workers
• Used for event-loops, callbacks,

& other computational work
• Implemented via “daemon threads”
• RxJava’s Schedulers.computation()

works in a similar way
• The Java common fork-join pool is

also similar wrt CPU-bound tasks
• The ManagedBlocker mechanism

supports I/O-bound tasks

Key Scheduler Operators for Project Reactor Reactive Types

See javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

18

End of Key Scheduler
Operators for Project Reactor

Reactive Types (Part 2)

