Key Scheduler Operators for Project

Reactor Reactive Types (Part 2)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators

« Scheduler operators

« These operators arrange to run
other operators in designated
threads & thread pools

 e.g., Schedulers.parallel()

Key Scheduler Operators for
Project Reactor Reactive Types

Key Scheduler Operators for Project Reactor Reactive Types

« The Schedulers.parallel() operator static Scheduler
parallel ()

« Hosts a fixed pool of single-threaded
ExecutorService-based workers

PN W Y S
4

Q)’ of worker th\'eade 4

,_i-/

< ~ = "

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html# parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types

« The Schedulers.parallel() operator static Scheduler
parallel ()

« Hosts a fixed pool of single-threaded
ExecutorService-based workers

« Returns a new Scheduler that is
suited for parallel work

Key Scheduler Operators for Project Reactor Reactive Types

« The Schedulers.parallel() operator SErAUT POOL 12t
« Hosts a fixed pool of single-threaded public static final int DEFAULT_POOL_SIZE
EXGCUtO rserVICe'based WO rkerS Default pool size, initialized by system property
. reactor.schedulers.defaultPoolSize and falls back
b Returns ad hew SChedUIer that IS to the number of processors available to the runtime on
. init.
suited for parallel work .
See Also:
] Size Obtained by System property Runtime.availableProcessors()

reactor.schedulers.defaultPoolSize

See projedreadorio/docs/core/release/api/reador/core/scheduler/Schedulers.himl#DEFAULT POOL SIZE

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types
« The Schedulers.parallel() operator availableProcessors

« Hosts a fixed pool of single-threaded | pubtic int avaitableprocessors()
ExeCUtorserVICe_based Workers Returns the number of processors available to the Java

- Returns a new Scheduler that is virtual machine.
SL“ted for pa ra”el WOI‘k This value may change during a particular invocation

of the virtual machine. Applications that are sensitive

° Slze Obta|ned by System property to the number of available processors should therefore

occasionally poll this property and adjust their

reactor.schedulers.defaultPoolSize | resource usage appropriately.

« Falls back to # of processors Returns:
available to the runtime on init the maximum number of processors available to

the virtual machine; never smaller than one

Since:

1.4

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html?is-external=true

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator Class Schedulers

* HOSts a flxed pOOI Of SIngIe-threaded javalraere:iciﬁf:i)crte.scheduler.Schedulers
ExecutorService-based workers

- Returns a new Scheduler that is rtens ugene oo :
SUIted for para”el Work Schedulers provides various Scheduler flavors usable by publishOn or

1(): Optimized for fast Runnable non-blocking executions
le(): Optimized for low-latency Runnable one-off executions

. . . e clastic(): Optimized for longer executions, an alternative for
. Opt|m|zed for Computat|on— blocking tasks where the number of active tasks (and threads) can
. . . grow indefinitely
IntenSIVG nOn'b|OCklng taSkS ° edElastic(): Optimized for longer executions, an alternative for
- - - blockmg tasks where the number of active tasks (and threads) is
due to its fixed-size caped
[o : to immediately run submitted Runnable instead of

scheduling them (somewhat of a no-op or "null object")
to create new instances

around Executors

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types
 The Schedulers.parallel() operator Class Schedulers

* HOSts a flxed pOOI Of SIngIe-threaded jaVaLlraere]i;c:rtiicrte.scheduler.Schedulers
ExecutorService-based workers

« Returns a new Scheduler that is P remis Gy e Seneduters
suited for parallel work

lers provides various eduler flavors usable by pub or

11lel(): Optimized for fast Runnable non-blocking executions
e(): Optimized for low-latency Runnable one-off executions

. . . e clastic(): Optimized for longer executions, an alternative for
. Opt| m |Zed for com putat|on - blocking tasks where the number of active tasks (and threads) can
. . . grow indefinitely
IntenSIVe nOn'b|OCklng taSkS ° : Optimized for longer executions, an alternative for
- - - blocking tasks where the number of active tasks (and threads) is
due to its fixed-size caped
. ° : to immediately run submitted Runnable instead of
¢ |.e., CompUtE'/CPU'bOU nd scheduling them (somewhat of a no-op or "null object")

taSkS, not I/O—bound tasksl ° to create new instances

around Executors

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator Flux
.fromIterable (bigFractions)

.flatMap
» Used for event-loops, callbacks, (bf -> Mono
& other computational work .fromCallable(() -> bf

multiply (sBigFrac))

.subscribeOn
(Schedulers.parallel()))

Arrange to multiply a List of Big _ _
Integer objects in a background -reduce (BigFraction: :add)
thread in computation thread pool

See Reactive/flux/ex3/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator Flux
.fromIterable (bigFractions)

.flatMap
» Used for event-loops, callbacks, (bf -> Mono
& other computational work .fromCallable(() -> bf

multiply (sBigFrac))

.subscribeOn
,//////////' (Schedulers.parallel()))
Each BigFraction emitted via from _ _
Callable() is multiplied in paralle! -reduce (BigFraction: :add)
within the computation thread pool

See Reactive/flux/ex3/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator Flux
.fromIterable (bigFractions)

.flatMap
» Used for event-loops, callbacks, (bf -> Mono
& other computational work .fromCallable(() -> bf

multiply (sBigFrac))

.subscribeOn
(Schedulers.parallel()))

.reduce (BigFraction: :add)

fromCallable() is a “lazy” factory method so multiply() runs in the
computation thread pool even though subscribeOn() comes after

12

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator Flux
.fromIterable (bigFractions)

.flatMap
» Used for event-loops, callbacks, (bf -> Mono
& other computational work .fromCallable(() -> bf

multiply (sBigFrac))

.subscribeOn
(Schedulers.parallel()))

.reduce (BigFraction: :add)

Only one thread runs reduce() after| —
all other computations are done

13

Key Scheduler Operators for Project Reactor Reactive Types

* The Schedulers.parallel() operator

» Implemented via “daemon threads”

* i.e., won't prevent the app from
exiting even if its work isn't done

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Key Scheduler Operators for Project Reactor Reactive Types

* The Schedulers.parallel() operator

» RxJava’s Schedulers.computation()
works in a similar way

i.e., it's fixed-size & intended for
compute-intensive &
non-blocking tasks

computation

@NonNull
public static @NonNull Scheduler computation()

Returns a default, shared Scheduler instance intended for computational work.
This can be used for event-loops, processing callbacks and other computational work.

It is not recommended to perform blocking, IO-bound work on this scheduler. Use io()
instead.

instances equal to the number of available processors
(Runtime.availableProcessors()) to the Java VM.

Unhandled errors will be delivered to the scheduler Thread's
Thread.UncaughtExceptionHandler.

This type of scheduler is less sensitive to leaking Scheduler.Worker 1nStances, although
not disposing a worker that has timed/delayed tasks not cancelled by other means may
leak resources and/or execute those tasks "unexpectedly".

If the RxJavaPlugins.setFailonNonBlockingScheduler(boolean) is set to true,
attempting to execute operators that block while running on this scheduler will throw an
IllegalStateException.

See readivex.io/ Rx]ava/3.x/iavadoc/io/reactivex/rxiavaB/sdweduIels/deeduIels.hUnI#computaﬁon|

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.parallel() operator commonPool

public static ForkJoinPool commonPool()

Returns the common pool instance. This pool is statically
constructed; its run state is unaffected by attempts to
shutdown() or shutdownNow(). However this pool and any
ongoing processing are automatically terminated upon program
System.exit(int). Any program that relies on asynchronous
task processing to complete before program termination should
invoke commonPool() .awaitQuiescence, before exit.

Returns:

the common pool instance

« The Java common fork-join pool is
also similar wrt CPU-bound tasks

See javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Key Scheduler Operators for Project Reactor Reactive Types

° The SChedL”erS-para”eI() Opel‘atOI’ public static interface ForkJoinPool.ManagedBlocker

Interface for extending managed parallelism for tasks
running in ForkJoinPools.

A ManagedBlocker provides two methods. Method
isReleasable() must return true if blocking is not
necessary. Method block() blocks the current thread if
necessary (perhaps internally invoking isReleasable
before actually blocking). These actions are performed by
any thread invoking
ForkJoinPool.managedBlock(ManagedBlocker). The
unusual methods in this API accommodate synchronizers
that may, but don't usually, block for long periods.
Similarly, they allow more efficient internal handling of

° The J ava common fork_join pOOl iS cases in which additional workers may be, but usually are

not, needed to ensure sufficient parallelism. Toward this

aISO Slmllar wrt CPU'bOU nd taSkS end, implementations of method isReleasable must be

. amenable to repeated invocation.
« The ManagedBlocker mechanism
supports I/O-bound tasks

See javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

End of Key Scheduler
Operators for Project Reactor
Reactive Types (Part 2)

18

