
Key Transforming Operators
in the Flux Class (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by a Flux
• e.g., flatMap()

This idiom is particularly useful for ”embarrassing parallel” programs

return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

We explain the Project
Reactor “flatMap()
concurrency idiom”

3

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by a Flux
• e.g., flatMap()

We also compare & contrast the Project
Reactor map() & flatMap() operators

4

The Project Reactor
flatMap() Concurrency Idiom

5

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

6

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom

See ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

https://ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

7

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

Create a Flux BigFraction
stream from a BigFraction list

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3/src/main/java/FluxEx.java

8

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

Iterate thru the Flux stream multiplying
big fractions in the parallel thread pool

9

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

Each BigFraction in the stream is processed
concurrently in the parallel thread pool

10

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

Multiply each BigFraction in a
thread from the parallel thread pool

11

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

Arrange to process each emitted
BigFraction in the parallel thread pool

12

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators
• This structure is known as the

“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux
 .fromIterable(bigFractions)

 .flatMap(bf -> Mono
 .fromCallable(() -> bf
 .multiply(sBigFrac))

 .subscribeOn
 (Schedulers
 .parallel()))

 .reduce(BigFraction::add)
 ...

After all the concurrent processing
completes then add all the Big

Fractions to compute the final sum

13

Comparing map & flatMap()

14

• The map() vs. flatMap() operators
Comparing map() & flatMap()

15

• The map() vs. flatMap() operators
• The map() operator transforms each

value in a Flux stream into a single
value

Comparing map() & flatMap()

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

16

• The map() vs. flatMap() operators
• The map() operator transforms each

value in a Flux stream into a single
value
• i.e., intended for synchronous, (non-)

blocking, 1-to-1 transformations

Comparing map() & flatMap()

17

• The map() vs. flatMap() operators
• The map() operator transforms each

value in a Flux stream into a single
value

• The flatMap() operator transforms each
value in a Flux stream into an arbitrary
number (zero or more) values

Comparing map() & flatMap()

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

18

• The map() vs. flatMap() operators
• The map() operator transforms each

value in a Flux stream into a single
value

• The flatMap() operator transforms each
value in a Flux stream into an arbitrary
number (zero or more) values
• i.e., intended for asynchronous (often

non-blocking) 1-to-N transformations

Comparing map() & flatMap()

19

• The map() vs. flatMap() operators
• The map() operator transforms each

value in a Flux stream into a single
value

• The flatMap() operator transforms each
value in a Flux stream into an arbitrary
number (zero or more) values

• flatMap() is used extensively in
Project Reactor

Comparing map() & flatMap()

20

End of Key Transforming
Operators in the Flux Class

(Part 3)

