
Key Transforming Operators
in the Flux Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by a Flux
• e.g., flatMap()

3

Key Transforming Operators
in the Flux Class

4

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously

Key Transforming Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

<R> Flux<R> flatMap
(Function<? super T,

? extends Publisher<?
extends R>>

mapper)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap
(Function<? super T,

? extends Publisher<?
extends R>>

mapper)

6

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Each <T> input element is

mapped to a Publisher<R>

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap
(Function<? super T,

? extends Publisher<?
extends R>>

mapper)

7

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Each <T> input element is

mapped to a Publisher<R>
• That Publisher will emit zero

or more items

Key Transforming Operators in the Flux Class

8

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Inner publishers are “flattened”

into one Flux by merging

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap
(Function<? super T,

? extends Publisher<?
extends R>>

mapper)

9

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Inner publishers are “flattened”

into one Flux by merging
• They can therefore interleave
• Especially when used for

concurrent processing

Key Transforming Operators in the Flux Class

See upcoming walkthrough of the “flatMap() concurrency idiom” example

10

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Inner publishers are “flattened”

into one Flux by merging
• It has similarities & differences

compared to map()

Key Transforming Operators in the Flux Class

flatMap() can transform the values
and/or type of elements it processes

11

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• These elements are emitted into

inner Publishers
• Inner publishers are “flattened”

into one Flux by merging
• It has similarities & differences

compared to map()

Key Transforming Operators in the Flux Class

The # of output elements may
differ from the # of input elements

12

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing

Key Transforming Operators in the Flux Class

See upcoming discussion on the Project Reactor flatMap() concurrency idiom

return Flux
 .fromIterable(denominators)

 .flatMap(denominator -> Mono
 .fromCallable(() ->
 BigFraction
 .valueOf(...,
 denominator))

 .subscribeOn
 (Schedulers
 .parallel())

 .map(bf -> bf
 multiply(sBigFrac)))

13

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing

Key Transforming Operators in the Flux Class

See Reactive/flux/ex3/src/main/java/FluxEx.java

return Flux
 .fromIterable(denominators)

 .flatMap(denominator -> Mono
 .fromCallable(() ->
 BigFraction
 .valueOf(...,
 denominator))

 .subscribeOn
 (Schedulers
 .parallel())

 .map(bf -> bf
 multiply(sBigFrac)))

Return a Flux to a multiplied big
fraction using the Project Reactor

“flatMap() concurrency idiom”

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

14

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing
• RxJava’s Observable.flatMap()

operator works the same way

Key Transforming Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

15

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing
• RxJava’s Observable.flatMap()

operator works the same way
• Similar to the Java Streams

flatMap() operation

Key Transforming Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream
 .of(a, b)
 .flatMap(List::stream)
 .sorted()
 .forEach(System.out::println);

Flatten, sort, & print
two lists of strings

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

16

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing
• RxJava’s Observable.flatMap()

operator works the same way
• Similar to the Java Streams

flatMap() operation
• However, Stream.flatMap()

doesn’t support parallelism..

Key Transforming Operators in the Flux Class

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream
 .of(a, b)
 .flatMap(List::stream)
 .sorted()
 .forEach(System.out::println);

See stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

https://stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

17

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing
• RxJava’s Observable.flatMap()

operator works the same way
• Similar to the Java Streams

flatMap() operation
• flatMap() doesn’t ensure the order

of the items in the resulting stream

Key Transforming Operators in the Flux Class

18

• The flatMap() operator
• Transform the elements emitted

by this Flux (a)synchronously
• This method is often used to

trigger concurrent processing
• RxJava’s Observable.flatMap()

operator works the same way
• Similar to the Java Streams

flatMap() operation
• flatMap() doesn’t ensure the order

of the items in the resulting stream
• Use concatMap() if order matters

Key Transforming Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#concatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

19

End of Key Transforming
Operators in the Flux Class

(Part 2)

