
Key Factory Method Operators
in the Flux Class (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Concurrency operators
• Scheduler operators
• Factory method operators
• These operators create Flux

streams in various ways in
various Scheduler contexts
• i.e., range() & interval()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the Flux Class

4

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#interval

static Flux<Long> interval
 (Duration period)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• The param indicates when

to increment a value at the
specified time interval

Key Factory Method Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/time/Duration.html

static Flux<Long> interval
 (Duration period)

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html

6

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• The param indicates when

to increment a value at the
specified time interval

• Returns a new Flux emitting
increasing #’s at regular
intervals

Key Factory Method Operators in the Flux Class
static Flux<Long> interval
 (Duration period)

7

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• Emits values on the Schedulers

.parallel() Scheduler

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

8

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• Emits values on the Schedulers

.parallel() Scheduler
• Other overloaded interval()

methods can designate the
Scheduler

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

9

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• Emits values on the Schedulers

.parallel() Scheduler
• In normal conditions, the

Flux will never complete

Key Factory Method Operators in the Flux Class

Generate a stream of longs every .5 seconds in a background thread

See Reactive/Flux/ex2/src/main/java/FluxEx.java

...
Flux
 .interval(Duration.ofMillis(500))
 ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flux/ex2/src/main/java/FluxEx.java

10

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• Emits values on the Schedulers

.parallel() Scheduler
• In normal conditions, the

Flux will never complete

Key Factory Method Operators in the Flux Class

...
Flux
 .interval(Duration.ofMillis(500))
 ...
 .take(sMAX_ITERATIONS)
 ...

See upcoming discussion of the Flux.take() operator

Use take() to only process
sMAX_ITERATIONS # of

emitted values from interval()

11

• The interval() operator
• Create a Flux that emits long

values starting with zero (0)
• Emits values on the Schedulers

.parallel() Scheduler
• In normal conditions, the

Flux will never complete
• RxJava’s Observable.interval()

works the same

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#interval

Observable
 .interval(sSLEEP_DURATION)
 ...
 .take(sMAX_ITERATIONS)
 ...

Use take() to only process
sMAX_ITERATIONS # of

emitted values from interval()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

12

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#range

static Flux<Integer> range
 (int start, int count)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

13

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’
• Emits integers between `start’ &

`start + count’ & then completes

Key Factory Method Operators in the Flux Class
static Flux<Integer> range
 (int start, int count)

14

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’
• Emits integers between `start’ &

`start + count’ & then completes
• Returns a “ranged” Flux containing

count elements

Key Factory Method Operators in the Flux Class
static Flux<Integer> range
 (int start, int count)

15

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

Key Factory Method Operators in the Flux Class

Emit sMAX_ITERATIONS
integers starting at 1

See Reactive/Flux/ex2/src/main/java/FluxEx.java

final int sMAX_ITERATIONS = 10;

...

Flux
 .range(1, sMAX_ITERATIONS)
 ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flux/ex2/src/main/java/FluxEx.java

16

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

• RxJava’s Observable.range() works
the same

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#range

Emit sMAX_ITERATIONS
integers starting at 1

final int sMAX_ITERATIONS = 10;

...

Observable
 .range(1, sMAX_ITERATIONS)
 ...

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

17

• The range() operator
• Build a Flux that will only emit a

sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

• RxJava’s Observable.range() works
the same

• Similar to IntStream.rangeClosed()
in Java Streams

Key Factory Method Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html#rangeClosed

Emit sMAX_ITERATIONS
integers starting at 1

IntStream.rangeClosed
 (1, sMAX_ITERATIONS)
 ...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html

18

End of Key Factory Method
Operators in the Flux Class

(Part 3)

