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Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Concurrency operators
• Scheduler operators
• These operators provide

various types of threads & 
thread pools
• e.g., Schedulers.newParallel()
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel

static Scheduler newParallel
  (String name,
   int parallelism)

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers
• The params (1) give a name for 

the scheduler & (2) indicate the 
# of pooled worker threads

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler newParallel
  (String name,
   int parallelism)
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers
• The params (1) give a name for 

the scheduler & (2) indicate the 
# of pooled worker threads

• Returns a Scheduler suitable for 
parallel compute-bound operations

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler newParallel
  (String name,
   int parallelism)



7

• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers
• The params (1) give a name for 

the scheduler & (2) indicate the 
# of pooled worker threads

• Returns a Scheduler suitable for 
parallel compute-bound operations
• However, it detects & 

rejects use of blocking 
Reactor APIs

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler

Key Scheduler Operators for Project Reactor Reactive Types
Scheduler publisher = Schedulers
  .newParallel("publisher", 1));
Flux
  .range(1, sMAX_ITERATIONS)
  .map(Integer::toUnsignedLong)
  .subscribeOn(publisher)
  .map(sGenerateRandomBigInt)
  .filter(sOnlyOdd)
  .doFinally(() -> publisher
             .dispose())
  .subscribe(sink::next,
             error -> 
               sink.complete(),
             sink::complete);

See Reactive/flux/ex2/src/main/java/FluxEx.java 

Arrange to emit the random big 
integers in the “publisher" thread

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler
• Not implemented via a “daemon 

thread” 

Key Scheduler Operators for Project Reactor Reactive Types

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler
• Not implemented via a “daemon 

thread” 
• i.e., an app won’t exit until this 

pool is disposed of properly & 
explicitly

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html#dispose 

Scheduler publisher = Schedulers
  .newParallel("publisher", 1));
Flux
  .range(1, sMAX_ITERATIONS)
  .map(Integer::toUnsignedLong)
  .subscribeOn(publisher)
  .map(sGenerateRandomBigInt)
  .filter(sOnlyOdd)
  .doFinally(() -> publisher
             .dispose())
  .subscribe(sink::next,
             error -> 
               sink.complete(),
             sink::complete);

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler

• RxJava’s Schedulers doesn’t have 
an equivalent method

Key Scheduler Operators for Project Reactor Reactive Types
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler

• RxJava’s Schedulers doesn’t have 
an equivalent method
• However, its from() method can 

be used in conjunction with Java’s 
Executor framework

Key Scheduler Operators for Project Reactor Reactive Types

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler

• RxJava’s Schedulers doesn’t have 
an equivalent method
• However, its from() method can 

be used in conjunction with Java’s 
Executor framework, e.g.

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Cached (Variable-sized)
Thread Pool

Work-stealing
Thread Pool

Fixed-sized
Thread Pool

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html
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• The Schedulers.newParallel() 
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based 
workers

• Can be used to create a custom 
parallel scheduler

• RxJava’s Schedulers doesn’t have 
an equivalent method

• Project Reactor decouples Scheduler
params from Flux, ParallelFlux, & Mono 
reactive types to enhance reuse

Key Scheduler Operators for Project Reactor Reactive Types

Flux Parallel
Flux

Mono

Mono

Scheduler

Flux

Parallel
Flux
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End of Key Scheduler 
Operators for Project Reactor 

Reactive Types (Part 1)


