
Key Scheduler Operators for Project
Reactor Reactive Types (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Concurrency operators
• Scheduler operators
• These operators provide

various types of threads &
thread pools
• e.g., Schedulers.newParallel()

3

Key Scheduler Operators for
Project Reactor Reactive Types

4

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel

static Scheduler newParallel
 (String name,
 int parallelism)

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

5

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers
• The params (1) give a name for

the scheduler & (2) indicate the
of pooled worker threads

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler newParallel
 (String name,
 int parallelism)

6

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers
• The params (1) give a name for

the scheduler & (2) indicate the
of pooled worker threads

• Returns a Scheduler suitable for
parallel compute-bound operations

Key Scheduler Operators for Project Reactor Reactive Types
static Scheduler newParallel
 (String name,
 int parallelism)

7

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers
• The params (1) give a name for

the scheduler & (2) indicate the
of pooled worker threads

• Returns a Scheduler suitable for
parallel compute-bound operations
• However, it detects &

rejects use of blocking
Reactor APIs

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

8

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

Key Scheduler Operators for Project Reactor Reactive Types
Scheduler publisher = Schedulers
 .newParallel("publisher", 1));
Flux
 .range(1, sMAX_ITERATIONS)
 .map(Integer::toUnsignedLong)
 .subscribeOn(publisher)
 .map(sGenerateRandomBigInt)
 .filter(sOnlyOdd)
 .doFinally(() -> publisher
 .dispose())
 .subscribe(sink::next,
 error ->
 sink.complete(),
 sink::complete);

See Reactive/flux/ex2/src/main/java/FluxEx.java

Arrange to emit the random big
integers in the “publisher" thread

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

9

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler
• Not implemented via a “daemon

thread”

Key Scheduler Operators for Project Reactor Reactive Types

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

10

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler
• Not implemented via a “daemon

thread”
• i.e., an app won’t exit until this

pool is disposed of properly &
explicitly

Key Scheduler Operators for Project Reactor Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html#dispose

Scheduler publisher = Schedulers
 .newParallel("publisher", 1));
Flux
 .range(1, sMAX_ITERATIONS)
 .map(Integer::toUnsignedLong)
 .subscribeOn(publisher)
 .map(sGenerateRandomBigInt)
 .filter(sOnlyOdd)
 .doFinally(() -> publisher
 .dispose())
 .subscribe(sink::next,
 error ->
 sink.complete(),
 sink::complete);

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

11

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method

Key Scheduler Operators for Project Reactor Reactive Types

12

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method
• However, its from() method can

be used in conjunction with Java’s
Executor framework

Key Scheduler Operators for Project Reactor Reactive Types

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

13

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method
• However, its from() method can

be used in conjunction with Java’s
Executor framework, e.g.

Key Scheduler Operators for Project Reactor Reactive Types

See docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Cached (Variable-sized)
Thread Pool

Work-stealing
Thread Pool

Fixed-sized
Thread Pool

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

14

• The Schedulers.newParallel()
operator
• Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method

• Project Reactor decouples Scheduler
params from Flux, ParallelFlux, & Mono
reactive types to enhance reuse

Key Scheduler Operators for Project Reactor Reactive Types

Flux Parallel
Flux

Mono

Mono

Scheduler

Flux

Parallel
Flux

15

End of Key Scheduler
Operators for Project Reactor

Reactive Types (Part 1)

