Key Factory Method Operators

in the Flux Class (Part 1}

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators

Class Flux<T>

java.lang.Object

reactor.core.publisher.Flux<T>

Type Parameters:

T - the element type of this Reactive Streams Publisher

All Implemented Interfaces:

Publisher<T>, CorePublisher<T>

Direct Known Subclasses:

ConnectableFlux, FluxOperator, FluxProcessor, GroupedFlux

public abstract class Flux<T>
extends Object
implements CorePublisher<T>

A Reactive Streams Publisher with rx operators that emits 0 to N elements, and then
completes (successfully or with an error).

The recommended way to learn about the F1ux APl and discover new operators is through
the reference documentation, rather than through this javadoc (as opposed to learning
more about individual operators). See the "which operator do | need?" appendix.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators
« Factory method operators

« These operators create
Flux streams in various
ways

* e.g., just(), fromArray(),
fromIterable(), & from()

See en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

Key Factory Method
Operators in the Flux Class

Key Factory Method Operators in the Flux Class

« The just() operator static <T> Flux<T> just(T... data)

» Create a Flux that emits the
given element(s) & then
completes

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#just

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

* The just() operator

* Create a Flux that emits the
given element(s) & then

completes
* The param(s) are the var
elements to emit var
var
 Passed as a vararg var
var
var
var

static <T> Flux<T> just(T... data)
jenny = Flux.just(8);

jenny = Flux.just(8,6);

jenny = Flux.just(8,6,7);

jenny = Flux.just(8,6,7,5);

jenny = Flux.just(8,6,7,5,3);
jenny = Flux.just(8,6,7,5,3,0);
jenny = Flux.just(8,6,7,5,3,0,9);

See www.baeldung.com/java-varargs

http://www.baeldung.com/java-varargs

Key Factory Method Operators in the Flux Class

« The just() operator static <T> Flux<T> just(T... data)

» Create a Flux that emits the
given element(s) & then
completes

« Returns a new Flux that’s
captured at “assembly time”

* |.e,, it's “eager”

“Assembly time" is when the Flux object is instantiated, rather than when it “runs”

Key Factory Method Operators in the Flux Class

« The just() operator static <T> Flux<T> just(T... data)
» Create a Flux that emits the
given element(s) & then e
completes ; |

ONE vs. MANY

 Multiple elements can be emitted,
unlike the Mono.just() operator

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#just

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

Key Factory Method Operators in the Flux Class

* The just() operator

- @.0.0.0.0

 This factory method operator
adapts non-reactive input
sources to the reactive model g4

/

Create a Flux stream of
four BigFraction objects

V V V
ux
.Jjust (BigFraction.
BigFraction.
BigFraction.
BigFraction.

ivv

valueOf (100, 3),
valueOf (100,4),
valueOf (100,2),
valueOf (100,1))

See Reactive/flux/ex1/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Factory Method Operators in the Flux Class

* The just() operator]ust(‘ Q O ‘ ‘)

v v i

 This factory method operator
adapts non-reactive input
sources to the reactive model

 Since just() is evaluated eagerly
at “assembly time” it runs in the
thread where assembly is performed

The fromIterable() & fromArray() factory method operators also evaluate eagerly

Key Factory Method Operators in the Flux Class

* The just() operator just (Q, O ; O ,O ,Q ’O)

Y Y Y Y Y Yy

Observable
« RxJava’s Observable.just() . just (BigFraction.valueOf (100, 3),
works the same BigFraction.valueOf (100,4),
BigFraction.valueOf (100,2),

Create an Observable stream BigFraction.valueOf (100,1))
of four BigFraction objects et

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#just

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Factory Method Operators in the Flux Class

* The just() operator

 Similar to the Stream.of()
operator in Java Streams

of

@SafeVarargs
static <T> Stream<T> of(T... values)

Returns a sequential ordered stream whose elements are the specified values.

Type Parameters:

T - the type of stream elements
Parameters:

values - the elements of the new stream
Returns:

the new stream

Stream
.of (BigFraction.valueOf (100, 3),
BigFraction.valueOf (100,4),
BigFraction.valueOf (100,2),

Create a stream of 4 BigFraction objects

BigFraction.valueOf (100,1))

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Key Factory Method Operators in the Flux Class

« The fromlIterable() method static <T> Flux<T> fromIterable
(Iterable<? extends T> it)

» Create a Flux that emits items
contained in the given Iterable

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#fromIterable

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

« The fromlIterable() method static <T> Flux<T> fromIterable

. Iterable<? extends T> it
e Create a Flux that emits items ()

contained in the given Iterable Interface Iterable<T>

 The Iterable.iterator() method will | .. ;..ometers:
be invoked at least once & at most | T - the type of elements returned by the
. . it t
twice for each subscriber o

All Known Subinterfaces:

BeanContext, BeanContextServices,
BlockingDeque<E>, BlockingQueue<E>,
Collection<E>, Deque<E>, DirectoryStream<T>,
List<E>, NavigableSet<E>, Path, Queue<E>,
SecureDirectoryStream<T>, Set<E>, SortedSet<E>,
TransferQueue<E>

See docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

Key Factory Method Operators in the Flux Class

« The fromIterable() method
00000

+ This factory method operator _ fromiterable
also adapts non-reactive input Y V V VY VY
sources into the reactive model

* e.g., Java collections like List

& Set List<Integer> list =
List.of(0,1,1,2,3,5,8,13,21);
Flux
Create a Flux stream of Integer

; - e It ble(list
objects from a Java List collection romIterable (list)

See Reactive/flux/ex1/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Factory Method Operators in the Flux Class
« The fromIterable() method
e @ O @ O @ @

Y Y Y Y Y Yy

* RxJava’s method Observable.
fromIterable() works the same List<Integer> list =

List.of(0,1,1,2,3,5,8,13,21);

Observable

Create an Observable stream of | fromTterable (list)

Integer objects from a List collection

See readtivex.io/RxJava/3.x/javadoc/io/readtivex/rxjava3/core/Observable.html#fromlIterable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Factory Method Operators in the Flux Class

» The fromIterable() method stream

default Stream<E> stream()
Returns a sequential Stream with this collection as its source.

This method should be overridden when the spliterator()
method cannot return a spliterator that is IMMUTABLE,
CONCURRENT, or late-binding. (See spliterator() for details.)

Implementation Requirements:

The default implementation creates a sequential
Stream from the collection's Spliterator.

Returns:

a sequential Stream over the elements in this

« Similar to the stream() method collection

in Java Collection List<Integer> list =

: List.of(0,1,1,2,3,5,8,13,21);
Create a stream of Integer objects \15 of ()

list.stream() ...

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

Key Factory Method Operators in the Flux Class

« The fromArray() method static <T> Flux<T> fromArray

» Create a Flux that emits items (T1] array)
in the given Java built-in array

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#fromArray

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

« The fromArray() method static <T> Flux<T> fromArray

» Create a Flux that emits items (T1] array)
in the given Java built-in array

* The param provides the array
to read the data from

See docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Key Factory Method Operators in the Flux Class

« The fromArray() method static <T> Flux<T> fromArray

» Create a Flux that emits items (T1] array)
in the given Java built-in array

e The returned Flux emits
the items from the array

20

Key Factory Method Operators in the Flux Class

« The fromArray() method
10000

« This factory method operator _ fromAray
also adapts non-reactl_ve input Y V V V VY
sources into the reactive model

>

Integer|[] array =
{0, 1, 1, 2, 3, 5, 8, 13, 21};

Flux

Create a Flux stream of Integer | fromArray (array)

objects from a Java built-in array

See Reactive/flux/ex1/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Factory Method Operators in the Flux Class

« The fromArray() method [Q, O O O Q O]

y

‘ fromArray \

Y Y VY Y Y Vy

* RxJava’s method Observable.

fromArray() works the same
Integer[] array =

{0, 1, 1, 2, 3, 5, 8, 13, 21};

Observable

Create an Observable stream of | fromArray (array)

Integer objects from a built-in array

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable. html#fromArray

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Factory Method Operators in the Flux Class

« The fromArray() method

 Similar to the of() method
in Java Streams

of

@SafeVarargs
static <T> Stream<T> of(T... values)

Returns a sequential ordered stream whose elements are the specified values.

Type Parameters:

T - the type of stream elements
Parameters:

values - the elements of the new stream
Returns:

the new stream

Create a stream of Integer
objects from a built-in array

Integer|[] array =
{0, 1, 1, 2, 3, 5, 8, 13, 21};

Stream

| — .of (array)

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Key Factory Method Operators in the Flux Class
« The fromArray() method stream

public static <T> Stream<T> stream(T[] array)

Returns a sequential Stream with the specified array as its source.
Type Parameters:

T - The type of the array elements

Parameters:

array - The array, assumed to be unmodified during use

Returns:

a Stream for the array

Integer[] array =

« Similar to the of() method (0, 1, 1, 2, 3, 5, 8, 13, 21};
in Java Streams
« Also, similar to the stream() Arrays
method in Java Arrays -Stream(array)

See docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

Key Factory Method Operators in the Flux Class

« The from() method static <T> Flux<T> from
(Publisher<? extends T> source)

« Decorate the specified Publisher
with the Flux API

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#from

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

« The from() method

« Decorate the specified Publisher
with the Flux API

« The param provides the source
to decorate

static <T> Flux<T> from
(Publisher<? extends T> source)

public interface Publisher<T>

A Publisher is a provider of a potentially unbounded number of sequenced elements,
publishing them according to the demand received from its Subscriber(s).

A Publisher can serve multiple Subscribers subscribed subscribe(Subscriber)

dynamically at various points in time.

Method Summary
All Methods Instance Methods Abstract Methods
Modifier and Method Description
Type
void subscribe(Subscriber<? Request Publisher to start
super T> s) streaming data.

See www.reactive-streams.org/reactive-streams-1.0.3-javadoc/org/readtivestreams/Publisherhtml

http://www.reactive-streams.org/reactive-streams-1.0.3-javadoc/org/reactivestreams/Publisher.html?is-external=true

Key Factory Method Operators in the Flux Class

« The from() method static <T> Flux<T> from
(Publisher<? extends T> source)

« Decorate the specified Publisher
with the Flux API

« Returns a new Flux that decorates
the source at runtime

* i.e, it's “lazy”

27

Key Factory Method Operators in the Flux Class

« The from() method

\ AR | \ AN B A |

 This factory method operator from(Publisher)
adapts non-Flux publishers into : : ; : I
the Flux API
OO0 00—
Flux
. from (Mono
///// .fromCallable
(() ->
Create a Flux containing a single BigFractionUtils
BigFraction object from a Mono .makeBigFraction (random,
true)))

See Reactive/flux/ex1/src/main/java/FIuxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Factory Method Operators in the Flux Class
« The from() method

Y VvV Y v vy

 This factory method operator from(Publisher)
adapts non-Flux publishers into ; ; ; : v
» from() is “lazy” v @ '
Flux
.from (Mono
.fromCallable
: : () ->
It invokes the Publisher param | __— BigFractionUtils
at the time of subscription & makeBigFraction (random
separately for each subscriber ' true)))’

29

Key Factory Method Operators in the Flux Class
« The from() method

\ AR | \ AN B A |

 This factory method operator from(Publisher)
adapts non-Flux publishers into ; . . T
the Flux API & LA 2 ‘ ‘{ >
o from() is “lazy” v YUY '
Flux
Can be used to workaround Fluxs| —. £rom (Mono
lack of a fromCallable() method .fromCallable
(() ->
w” BigFractionUtils
Q .makeBigFraction (random,
\ true)))

See chat.openai.com/share/17ba266c-39f4-4834-84bf-dd8254a65be3

https://chat.openai.com/share/17ba266c-39f4-4834-84bf-dd8254a65be3

Key Factory Method Operators in the Flux Class

» The from() method [Q’ 00 0@ O

y

‘ fromArray \

Y Y Y Y Y Vy

* RxJava’s method Observable.

fromCallable() is similar Observable

.fromCallable

/ (0O ->
BigFractionUtils

.makeBigFraction (random,
true)))

Create an Observable containing
a single BigFraction object

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#fromCallable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

End of Key Factory Method

Operators in the Flux Class
(Part 1)

32

