
Overview of the Overflow Strategies in
the Project Reactor Flux Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand key classes in the Project

Reactor API
• Know how Project Reactor Flux

supports backpressure
• Recognize the Flux overflow strategies

3

Overview of Flux Over
flow Strategies

4

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

5

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

All values are buffered so that
subscriber can receive all values

May cause some delays in processing, but won’t lose values (until memory is exhausted)

6

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Drop most recent onNext() value if down
stream can’t keep up because its too slow

7

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Throw OverflowException if the down
stream can’t keep up due to slowness
(the documentation is incorrect here)

See chat.openai.com/share/e347ec9d-ec85-47fc-9d40-b5b7928b1b7a

https://chat.openai.com/share/e347ec9d-ec85-47fc-9d40-b5b7928b1b7a

8

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

There is no buffering or dropping,
so Subscriber(s) must handle over
flow or they will receive an error

See chat.openai.com/share/26d464f0-2f9a-46b6-8012-ea55bebc3113

https://chat.openai.com/share/26d464f0-2f9a-46b6-8012-ea55bebc3113

9

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Only keep latest onNext() value, over
writing previous value if downstream
can’t keep up because it’s too slow

This strategy effectively has a “buffer” of size one..

10

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

11

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Flux
 .create(makeEmitter(count,
 sb),
 FluxSink
 .OverflowStrategy
 .ERROR)

 .flatMap(bf1 ->
 multiplyFraction(bf1,
 sBigReducedFraction,
 Schedulers.parallel(),
 sb))

 .subscribe
 (blockingSubscriber);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

12

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

Rapidly emit a stream of random
BigFraction objects in one fell swoop

Flux
 .create(makeEmitter(count,
 sb),
 FluxSink
 .OverflowStrategy
 .ERROR)

 .flatMap(bf1 ->
 multiplyFraction(bf1,
 sBigReducedFraction,
 Schedulers.parallel(),
 sb))

 .subscribe
 (blockingSubscriber);

13

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

Throw exception when events
can’t be processed immediately

Flux
 .create(makeEmitter(count,
 sb),
 FluxSink
 .OverflowStrategy
 .ERROR)

 .flatMap(bf1 ->
 multiplyFraction(bf1,
 sBigReducedFraction,
 Schedulers.parallel(),
 sb))

 .subscribe
 (blockingSubscriber);

14

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

• This operator is different than the
one param version of Flux.create()

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

This Flux.create() operator just buffers all signals
& does not support other backpressure strategies

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

15

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/reference/#which.errors

https://projectreactor.io/docs/core/release/reference/

16

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureDrop()
• Ignore all streamed items that

can’t be processed until down
stream can accept more of them

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureDrop

component
 .mouseMoves()
 .onBackpressureDrop()
 .publishOn
 (Schedulers.parallel(),
 1)
 .subscribe(event ->
 compute(event.x,
 event.y));

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

17

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureLatest()
• Like the DROP strategy, but it

keeps the last emitted item

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureLatest

component
 .mouseClicks()
 .onBackpressureLatest()
 .publishOn
 (Schedulers.parallel())
 .subscribe(event ->
 compute(event.x,
 event.y),
 Throwable::
 printStackTrace);

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

18

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureBuffer()
• Creates a buffer to hold emitted items

that can’t be processed by downstream

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureBuffer

Flux
 .range(1, 1_000_000)
 .onBackpressureBuffer
 (16,
 BufferOverflowStrategy
 .DROP_OLDEST)
 .publishOn
 (Schedulers.parallel())
 .subscribe(e -> { },
 Throwable::
 printStackTrace);

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

19

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureBuffer()
• Creates a buffer to hold emitted items

that can’t be processed by downstream
• Buffer can be bounded or unbounded

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/BufferOverflowStrategy.html

Flux
 .range(1, 1_000_000)
 .onBackpressureBuffer
 (16,
 BufferOverflowStrategy
 .DROP_OLDEST)
 .publishOn
 (Schedulers.parallel())
 .subscribe(e -> { },
 Throwable::
 printStackTrace);

When buffer is full, remove
oldest element from it & offer
new element at end instead

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/BufferOverflowStrategy.html

20

End of Overview of
Overflow Strategies in the
Project Reactor Flux Class

