Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

Enum Constant Summary

| .
« Recognize the Flux overflow strategies

BUFFER

Buffer all signals if the downstream can't keep up.

DROP

Drop the incoming signal if the downstream is not ready to receive it.

ERROR

Signal an 11legalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

Overview of Flux Over
flow Strategies

Overview of Flux Overflow Strategies
° FIUX Overﬂow Strategles Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Overview of Flux Overflow Strategies
° FIUX Overﬂow Strategles Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

/4// Va/UE'S a/'e bUﬁeer 50 that Enum Constant and Description
subscriber can receive all values | t— surszx

Buffer all signals if the downstream can't keep up.

DROP

Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 111egalstateException When the downstream can't keep up

IGNORE

Completely ignore downstream backpressure requests.

LATEST
Downstream will get only the latest signals from upstream.

May cause some delays in processing, but won't lose values (until memory is exhausted)

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

Drop most recent onNext() value if down
stream can’t keep up because its too slow

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR

Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

Throw OverflowException If the down

stream can’t keep up due to slowness
(the documentation is incorrect here)

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR
/ Signal an 11legalstateException When the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST
Downstream will get only the latest signals from upstream.

See chat.openai.com/share/e347ec9d-ec85-47fc-9d40-b5b7928b1b7a

https://chat.openai.com/share/e347ec9d-ec85-47fc-9d40-b5b7928b1b7a

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to | st siavie soen miessin orertionsssaceas
handle emitted items that can’t be
processed as fast as they're received

Enumeration for backpressure handling.

Enum Constant Summary

There is no buffering or dropping,
S0 Subscriber(s) must handle over Enum Constant and Description
flow or they will receive an error

Buffer all signals if the downstream can't keep up.

DROP

Drop the incoming signal if the downstream is not ready to receive it.

~ N
ERROR
\ Signal an 111egalstateException when the downstream can't keep up
IGNORE
- Completely ignore downstream backpressure requests.
LATEST
Downstream will get only the latest signals from upstream.

See chat.openai.com/share/26d464f0-2f9a-46b6-8012-ea55bebc3113

https://chat.openai.com/share/26d464f0-2f9a-46b6-8012-ea55bebc3113

Overview of Flux Overflow Strategies

° FIUX Overflow Strategies Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Only keep latest onNext() value, over
Wf/ﬁﬂg pre V/OUS Va/ue /f downstream Enum Constant and Description
can’t keep up because its too slow

Buffer all signals if the downstream can't keep up.

DROP

Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

; 1 / e LATEST
' 0“I.Y 0“E* \ SA- Downstream will get only the latest signals from upstream.

This strategy effectively has a “buffer” of size one..

Overview of Flux Overflow Strategies

* Flux overflow strategies say how o | =« e = mem et e 2 W
h a n d Ie e m itted items that Ca n ’t be Programmatically create a F1ux with the capability of emitting multiple elements in a synchronous or
asynchronous manner through the Fluxsink AP. This includes emitting elements from multiple threads.
’ -
processed as fast as they're received

 These strategies can be provided s
via the two param version of the '
Flux.create() operator

sinkl

-
addListener() removeListener()

create(OverflowStrategy.LATEST)

— 00— 0 —

This Flux factory is useful if one wants to adapt some other multi-valued async APl and not worry about
cancellation and backpressure (which is handled by buffering all signals if the downstream can't keep up).

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies
 Flux overflow strategies say how to Flux

handle emitted items that can't be .create (makeEmitter (count,
processed as fast as they're received sb) ,
] . FluxSink
. T_hese strategies can be_ provided .OverflowStrategy
via the two param version of the .ERROR)

Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

.flatMap (bf1l ->
multiplyFraction (bfl,
sBigReducedFraction,

Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

» These strategies can be provided
via the two param version of the
Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

Rapidly emit a stream of random
BigFraction objects in one fell swoop

Flux
.create (makeEmitter (count,

sb) ,

FluxSink
.OverflowStrategy
.ERROR)

.flatMap (bfl ->

multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

12

Overview of Flux Overflow Strategies

 Flux overflow strategies say how to Flux
handle emitted items that can’t be .create (makeEmitter (count,

processed as fast as they're received sb) ,
] . FluxSink
. T_hese strategies can be_ provided .OverflowStrategy
via the two param version of the .ERROR)

Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

.flatMap (bfl ->
multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
Throw exception when events sb))
can't be processed immediately

.subscribe
(blockingSubscriber) ;

13

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be mlyesde
processed as fast as they're received

» These strategies can be provided
via the two param version of the :
Flux.create() operator sink i ¥

0
addListener() removeListener()

 This operator is different than the
one param version of Flux.create()

This Flux.create() operator just buffers all signals
& does not support other backpressure strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

» They can also be provided via other

Flux onBackpressure*() operators

¢ | want to deal with backpressure "errors" (request max from
upstream and apply the strategy when downstream does not

produce enough request)...

o by throwing a special lllegalStateException:

Flux#onBackpressureError

o by dropping excess values: Flux#onBackpressureDrop
= _..except the last one seen: Flux#onBackpressurelLatest

o by buffering excess values (bounded or unbounded):

Flux#onBackpressureBuffer

= ...and applying a strategy when bounded buffer also
overflows: Flux#onBackpressureBuffer with a

BufferOverflowStrategy

See projectreactor.io/docs/core/release/reference/#which.errors

https://projectreactor.io/docs/core/release/reference/

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to =~ component
handle emitted items that can’t be .mouseMoves ()

processed as fast as they're received -onBackpressureDrop ()
.publishOn

(Schedulers.parallel (),
1)
.subscribe (event ->
compute (event.x,
event.y));

» They can also be provided via other
Flux onBackpressure*() operators

« onBackpressureDrop()

« Ignore all streamed items that
can’t be processed until down
stream can accept more of them

See Flux.html#onBackpressureDrop

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

 Flux overflow strategies say how to =~ component

handle emitted items that can’t be -mgseili‘:ks () N
processed as fast as they’re received -onBackpressurelatest ()
.publishOn

(Schedulers.parallel())
.subscribe (event ->
compute (event.x,

» They can also be provided via other event.y),
* Throwable: :
Flux onBackpressure*() operators

printStackTrace) ;
« onBackpressurelLatest()

 Like the DROP strategy, but it
keeps the last emitted item

See Flux.html#onBackpressurelatest

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

« Flux overflow strategies say how to =~ Flux
handle emitted items that can’t be .range (1, 1_000_000)

processed as fast as they’re received '°m?i“63kpr essureBuffer

BufferOverflowStrategy
.DROP_OLDEST)
.publishOn

. : : (Schedulers.parallel())
They can also be provided via other 17"~ e -> { },

b S
Flux onBackpressure*() operators Throwable: -
« onBackpressureBuffer() printStackTrace) ;

 Creates a buffer to hold emitted items
that can’t be processed by downstream

See Flux.html#onBackpressureBuffer

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

« Flux overflow strategies say how to =~ Flux
handle emitted items that can’t be .range (1, 1_000_000)

processed as fast as they're received '°n]?i“6:kpressure3u‘ffer

BufferOverflowStrategy
.DROP OLDEST)
.publishOn

» They can also be provided via other (Schedulers.parallel())
.subscribe(e -> { },

b S
Flux onBackpressure*() operators Throwable: -
« onBackpressureBuffer() printStackTrace) ;

 Creates a buffer to hold emitted items hen buffer fe Tl
’ en opuirer Is iull, remove
that can’t be processed by downstream oldest element From it & offer

« Buffer can be bounded or unbounded new element at end instead

See projecreadtorio/docs/core/release/api/reactor/core/publisher/BufferOverflowStrategy.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/BufferOverflowStrategy.html

End of Overview of
Overflow Strategies in the
Project Reactor Flux Class

20

