Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

f+ .
nnnnnnn

« Know how Project Reactor Flux supports
backpressure

we cive LOWETHET.ONE

Learning Objectives in this Part of the Lesson

« Know how Project Reactor Flux supports
backpressure, e.q.,

« What motivates the need for back-
pressure in reactive systems

-

Publisher

\

10k events per second

4)

Consumer

7.5k even

ts per secon:

€ 9

U

7.5k events per second

GUI

3

Learning Objectives in this Part of the Lesson

Publisher Subscriber

request(3)
onNext()
onNext()

onNext()

« Know how Project Reactor Flux supports
backpressure, e.q.,

Y

v

« How the Subscription.request()
mechanism supports “backpressure-
aware” publishers & subscribers

00000
A
Y

Learning Objectives in this Part of the Lesson

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

« Know how Project Reactor Flux supports | enum constant summary
backpressure, €.g.,

Enum Constant and Description

BUFFER

Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR

Signal an 111egalstateException when the downstream can't keep up

IGNORE

° & Ove r.ﬂ OW st ra teg Ies s u p po rt \ ba C k_ Completely ignore downstream backpressure requests.

LATEST

pressu re_ U nawa re o pU bI ISh e rS & Downstream will get only the latest signals from upstream.

subscribers

Motivation for Back
pressure Mechanisms

Motivation for Backpressure Mechanisms

« Classic client/server systems don't need CALLER
backpressure mechanisms since two-way ! _ !

. . 1 blockingDownload;
synchronous request/response interactions ﬂ

CALLEE

provide a limited form of flow-control PUS. return result; ___

blockingDownload,

return result,

Note "request/response” -
nature of these calls

blockingDownloads

return returns

See en.wikipedia.org/wiki/Request-response

https://en.wikipedia.org/wiki/Request%E2%80%93response

Motivation for Backpressure Mechanisms

« Some form of backpressure is needed in reactive streams-based systems
where Publisher(s) can produce events faster than Subscriber(s) are capable
of consuming them

r N r N r N

10k events per second
> 7.5k events per second

Publisher Subscriber - GUI

) I

See www.baeldung.com/spring-webflux-backpressure

http://www.baeldung.com/spring-webflux-backpressure

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time &

locations throughout a reactive system i%

(\ (\ 2.5k events (\
per second
10k events per second
> 7.5k events per second

Publisher Subscriber —p GUI

7.5k events per second

M

: 4

7.5k events per second
Dropping

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time &

locations throughout a reactive system i%

4 R 4 \éf 2okeens)

10k events per second
> 7.5k events per secon d

Publisher Subscriber - GUI

7.5k events per second
2.5k events
per second \

Slow the Publisher down to a 7.5k events per second o]
rate the Subscriber can process pping

May not always be possible, especially for cyber-physical systems

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time &

locations throughout a reactive system i%
Subscriber can store the events /ﬂ/smﬂng W D

temporarily until it can process it

(\ (\ 2.5k events (\
per second
10k events per second
> 7.5k events per second

Publisher Subscriber - GUI

7.5k events per second
2.5k events
per second \

- J}] */ -

U

7.5k events per second
Dropping

May eventually cause “out-of-memory” exceptions!

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time &

locations throughout a reactive system i%

(\ (\ 2.5k events (\
per second
10k events per second
> 7.5k events per second

Publisher Subscriber —p GUI

N e T € 9

U

Discard events that cant Fsk events per second —]
5 c roppin
be processed immediately i

7.5k events per second
2.5k events
per second \

May be problematic if all events contain valuable data

Overview of Backpressure
iIn Project Reactor Flux

13

Overview of Backpressure in PrOJect Reactor Fqu

 Project Reactor Flux supports several
types of backpressure

t &t LOWETHAT ONE

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor

Overview of Backpressure in Project Reactor Flux
 Project Reactor Flux supports several Publisher Subscriber

types of backpressure, e.g. . request(3)
 Backpressure-aware Subscriber(s) \ onNext() .
can inform Publisher(s) how much . onNext() |
data they can consume . onNext() = .
\ @

15

Overview of Backpressure in Project Reactor Flux

» Project Reactor Flux supports several
types of backpressure, e.g.

« Backpressure-aware Subscriber(s)
can inform Publisher(s) how much
data they can consume

« The goal is to avoid overwhelming
memory/processing resources

* i.e., flow-control Publisher(s) so they
don’t generate events faster than
Subscriber(s) can consume them

See www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

http://www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

Overview of Backpressure in Project Reactor Flux

 Project Reactor Flux supports several = void onSubscribe
types of backpressure, e.g. (Subscription subscription) {

: mSubscription =
» Backpressure-aware Subscriber(s) pEe _
. : subscription;
can inform Publisher(s) how much
data they can consume subscription
.request (mRequestSize) ;

}

» Requires Publisher(s) & Subscriber(s)
to interact & collaborate

Subscriber(s) call the request() method on a Subscription passed
by Publisher(s) to Subscriber(s) via the onSubscribe() hook method

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Overview of Backpressure in Project Reactor Flux

* Project Reactor Flux supports several | suic scaic o riusine overtionseratesy
types of backpressure, e.g.

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

» Non-backpressure-aware Subscriber(s) | e
. Buffer all signals if the downstream can't keep up.
can apply an overflow strategy if they| ~— o
Can’t keep up Wlth faster PUb“Sher(S) Drop the incoming signal if the downstream is not ready to receive it.

ERROR

Signal an 111egalstateException when the downstream can't keep up

IGNORE

Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Overview of Backpressure in Project Reactor Flux

» Project Reactor Flux supports several
types of backpressure, e.g.

» Non-backpressure-aware Subscriber(s)
can apply an overflow strategy if they
can't keep up with faster Publisher(s)

« i.e., non-flow-controlled Publisher(s)

19

End of Overview of
Backpressure Models in the
Project Reactor Flux Class

20

