Understanding Key Classes

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Understand key classes in
the Project Reactor API

Mono

This is the timeline of the Mono
Time flows from left to right

This Mono is the result
of the transformation

This is the optional item
emitted by the Mono

This is the timeline of the Flux
Time flows from left to right

This Flux is the result
of the transformation

This vertical line indicates that
the Mono has completed successfully

A4

-

v These dotted lines and this box

operator (...)

indicate that a transformation
is being applied to the Mono

The text inside the box shows

the nature of the transformation

X

-

If for some reason the Mono terminates
abnormally, with an error, the vertical
line is replaced by an X

This vertical line indicates that

These are the items emitted by the Flux the Flux has completed successfully

OO0+

v

These dotted lines and this box

«-----
«-----
<......——

indicate that a transformation

is being applied to the Flux
operator (...) 9 2P

The text inside the box shows

the nature of the transformation

\4

If for some reason the Flux terminates
abnormally, with an error, the vertical

FI ux & line is replaced by an X
ParallelFlux

Key Classes in the
Project Reactor API

Key Classes in the Project Reactor API

« There are three key classes
in the Project Reactor API

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

- Mono

« Completes successfully or with
failure, may or may not emit a
single value

Class Mono<T>

java.lang.Object

reactor.core.publisher.Mono<T>

Type Parameters:

T - the type of the single value of this class

All Implemented Interfaces:

Publisher<T>, CorePublisher<T>

Direct Known Subclasses:

snoOperator onaoProcaecenr
)

public abstract class Mono<T>
extends Object
implements CorePublisher<T>

A Reactive Streams Publisher with basic rx operators that completes successfully by
emitting an element, or with an error.

The recommended way to learn about the Mono APl and discover new operators is through
the reference documentation, rather than through this javadoc (as opposed to learning
more about individual operators). See the "which operator do | need?" appendix.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

Key Classes in the Project Reactor API

* There are three key classes BigFraction unreducedFraction =
in the Project Reactor API makeBigFraction(...);
- Mono
Mono
« Completes successfully or with .fromCallable (() -> BigFraction
failure, may or may not emit a .reduce (unreducedFraction))
single value

.subscribeOn

« Similar to a Java Completable (Schedulers.single ())

Future or an async Optional<T>
.map (ibf -> ibf.toMixedString())

.doOnSuccess (bf —>
System.out.println
("result = " + bf + "\n"));

See stackoverflow.com/questions/54866391/mono-vs-completablefuture

https://stackoverflow.com/questions/54866391/mono-vs-completablefuture

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

- Mono
« Completes successfully or with O { >
failure, may or may not emit a ; ;
single value v v

operator (...)

e Can be documented via a
“marble diagram”

o
) &
\j

See projectreactor.io/docs/core/release/reference/#howtoReadMarbles

https://projectreactor.io/docs/core/release/reference/

Key Classes in the Project Reactor API

) Thter: € gre _thl;es ke{ CI?ASPSIe > This is the timeline of a Mono,
N the Froject Reactor where time flows from left to right

« Mono \

« Completes successfully or with O i >
failure, may or may not emit a g 5
single value A4 v

operator (...)

v '
» Can be documented via a O Y »
“marble diagram”

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API VIS5 55 nl2 e (Gl ase)

(eventually) by the Mono

- Mono \/\
« Completes successfully or with | >
:) & l
failure, may or may not emit a g g
single value A v

operator (...)

V :
 Can be documented via a Y\ Y,
. : .) K—>
marble diagram

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API These dotted lines & this box indicate that a

transformation is being applied to the Mono

« Mono

« Completes successfully or with \ O { >
failure, may or may not emit a \ g g
single value v v

operator (...)
v '
« Can be documented via a VN \ Y »

“marble diagram”

The text inside the box indicates
the type of transformation

10

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

- Mono
« Completes successfully or with O i
failure, may or may not emit a ; ;
single value v v

operator (...)

« Can be documented via a

>
“marble diagram” /U

This Mono is the result
of the transformation

11

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API This vertical line indicates the

Mono completed successtully

 Mono \i

« Completes successfully or with O >
failure, may or may not emit a g ,
single value v v

operator (...)

v :

« Can be documented via a N V
O—X—

“marble diagram”

12

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

« Mono
« Completes successfully or with O i >
failure, may or may not emit a ; ;
single value v v
operator (...)
« Can be documented via a O Y »
“marble diagram” /

If the Mono terminates abnormally
the vertical line is replaced by an X

13

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

« Mono

« Completes successfully or with
failure, may or may not emit a
single value

« Provides a wide range of
operators

» Factory method operators
Transforming operators
Action operators

Concurrency & scheduler
operators

Combining operators
Suppressing operators
Blocking operators
etc.

14

Key Classes in the Project Reactor API

* There are three key classes Class Flux<T>
in the Project Reactor API java.lang,Object

reactor.core.publisher.Flux<T>

Type Parameters:

T - the element type of this Reactive Streams Publisher
* Flux

All Implemented Interfaces:

« Emits an indefinite # of events | rusisherrs, corpusiisner<r
(0 tO infinite) & may Complete DirectKnown‘S‘ubc‘lTsses:
successfully or w/failure o

public abstract class Flux<T>
extends Object
implements CorePublisher<T>

A Reactive Streams Publisher with rx operators that emits 0 to N elements, and then
completes (successfully or with an error).

The recommended way to learn about the F1ux APl and discover new operators is through
the reference documentation, rather than through this javadoc (as opposed to learning
more about individual operators). See the "which operator do | need?" appendix.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Classes in the Project Reactor API

* There are three key classes Flux
in the Project Reactor API .create
(bigFractionEmitter)
* Flux . take (SMAX FRACTIONS)

 Emits an indefinite # of events
.flatMap (unreducedFraction ->

(0 to infinite) & may complete g MLt iolvFracts
successfully or w/failure reduceAndMu.tiplyFraction
(unreducedFraction,

 Similar to an async Java stream Schedulers.parallel()))

. i.e., completable futures used -collectList()

with a Java stream _
.flatMap (1list ->

sortAndPrintList
(list, sb));

16

Key Classes in the Project Reactor API

* There are three key classes Publisher Subscriber
in the Project Reactor API

request(3)
onNext()
onNext()

onNext()

Y

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

00000
v v
000

» Supports backpressure

» The subscriber indicates to the
publisher how much data it can
consume

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor/

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

* Flux Q Q <> I,

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

v vV v

operator (...)

\4
v ooy
— @O %

« Can also be documented via a
marble diagram

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API This is the timeline of a Flux,

where time flows from left to right

* Flux \QQQ |,

« Emits an indefinite # of events
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

o6 x -

« Can also be documented via a
marble diagram

19

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API These are the items emitted

(eventually) by the Flux

* Flux Q \’\v L
« Emits an indefinite # of events ; 5 ; ;
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

@ X -

« Can also be documented via a
marble diagram

20

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API

These dotted lines & this box indicate that a
transformation is being applied to the Flux

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

« Can also be documented via a
marble diagram

@/o ot

v v vV v

operator (...)

The text inside the box indicates
the type of transformation

21

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

* Flux 0 N Q | >
\:'/ ~ : :
: : v

 Emits an indefinite # of events
(0 to infinite) & may complete v v v

successfully or w/failure operator (...)
o O 5
O—XK—
« Can also be documented via a \
marble diagram These Flux elements are the

result of the transformation

22

Key Classes in the Project Reactor API

* There are three key classes

in the Project Reactor API This vertical line indicates the

Flux completed successfully

* Flux @ __ @,
b
AN SN S |

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure operator (...)

o6 x -

« Can also be documented via a
marble diagram

23

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

* Flux 0 N Q | >
\:'/ \/ : :
v .

« Emits an indefinite # of events . 5 5
(0 to infinite) & may complete v v Vv
successfully or w/failure operator (...)

y v :’

« Can also be documented via a

marble diagram If the Flux terminates abnormally

the vertical line is replaced by an X

24

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

 Provides a wide range of operators

» Factory method operators
Transforming operators
Action operators

Concurrency & scheduler
operators

Combining operators
Terminal operators
Suppressing operators
Blocking operators
etc.

25

Key Classes in the Project Reactor API

 There are three key classes public abstract class ParallelFlux<T>
in the Project Reactor API extends Salees

implements CorePublisher<T>

A ParallelFlux publishes to an array of Subscribers, in parallel
'rails' (or 'groups"').

. P " IFI Use from(reactor.core.publisher.ParallelFlux<T>)
aralle ux to start processing a regular Publisher in 'rails', which each

o Deﬁnes a Subset Of FIUX Operators cover a subset of the original Publisher's data.

Flux.parallel() is a convenient shortcut to achieve that on

that provide a concise means of | ariux
proceSSIng elements IN para”el Use runOn(reactor.core.scheduler.Scheduler) to

introduce where each 'rail' should run on thread-wise.

Use sequential() to merge the sources back into a single
Flux.

Use then() to listen for all rails termination in the produced
Mono

See projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/ParallelFlux.html

Key Classes in the Project Reactor API

* There are three key classes List<Image> imgs = Flux
in the Project Reactor API .fromIterable (Options.
instance () .getUrlList())

.parallel (parallelism)

* ParallelFlux
.runOn (scheduler)

.map (downloadAndStoreImage)

« Operators convert Flux to Parallel -sequential()
Flux & vice versa _
.collectList()
.block () ;

27

Key Classes in the Project Reactor API

* There are three key classes
in the Project Reactor API

 ParallelFlux

« Similar in structure & functionality
to a Java parallel stream

N
]

@

Y

O—@

P
M

!

O

—O—@

1 @ ParallelFlux<Q> | i

L

v

v v

v ¥ v vy

: i

sequential()

Parallel/
Stream

Parallel/
Flux

EECONNE..-O

filter(not(this::urlCached))

L

map(this:.downloadimage)

4} |

flatMap(this::applyFilters)

S

collect(toList()) |

See chat.openai.com/share/c78d3a92-eced-4414-83d9-aacd86f41209

https://chat.openai.com/share/c78d3a92-eced-4414-83d9-aacd86f41209

End of Understanding
Key Classes in the
Project Reactor API

29

