Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

EE@E@E@E@E’-‘U@E@EE

- Be aware of the pros & cons of Java reactive —- ?f
streams platforms vs. alternatives ‘) [o
. / . //
\

Pros of Java Reactive
Streams Platforms

Pros of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles Responsive
to achieve several benefits

Message-
driven

Pros of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
« Improved resource utilization

« Support concurrency with a
minimal number of threads
via a range of thread pools

Name

Schedulers.computation()

Schedulers.immed iate()

Schedulers.iof)

Schedulers.trampoline()

Schedulers.newThread()

Schedulers.test()

Schedulers.from(Executor e)

Description

Schedules computation bound work
(ScheduledExecutorSenice with pool size = NCPU, LRU
worker select strategy)

Schedules work on current thread

/O bound work (ScheduledExecutorService with growing
thread pool)

Queues work on the current thread
Creates new thread for every unit of work
Schedules work on scheduler supporting virtual time

Schedules work to be executed on provided executor

Pros of Java Reactive Streams Platforms

» Java reactive streams implementations (500ms backend service)
apply reactive programming principles #°®
to achieve several benefits 3200

3000
« Improved resource utilization

== Synchronous
- Reactive

rriliseconds {35th percentile)

1500
via a range of thread pools e /
0

2500
« Support concurrency with a 2
minimal number of threads 1000
500

. Scale_ up performance with 1 10 100 200 500 1000 2000

relatively few resources Concurrent users

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros of Java Reactive Streams Platforms

 Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

« Improved resource utilization R

el
« Support concurrency with a o % : %l o 7 :
minimal number of threads
via a range of thread pools e.qg, down/oadmg
more images than
the number of cores

« Particularly useful for I/0O-bound
operations in Java programs using

traditional threading models Y‘ r i’ Y’

Pros of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

« Improved resource utilization

 Provide a rich set of operators to manage
asynchronous data flows & backpressure

« Prevents subscribers from being over-
whelmed in high-load environments

See www.wideopeneats.com/i-love-lucy-chocolate-factory

https://www.wideopeneats.com/i-love-lucy-chocolate-factory/

Pros of Java Reactive Streams Platforms

 Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

» Hides concurrent programming

 Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Alleviates many accidental & inherent complexities of concurrency/parallelism

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros of Java Reactive Streams Platforms

 Java reactive streams implementations

apply reactive programming principles
to achieve several benefits

« Enhanced error handling

 Contributes to building resilient
systems that can gracefully handle
failures & maintain functionality
under adverse conditions

See kalpads.medium.com/error-handling-with-reactive-streams-77b6ec7231ff

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test
https://kalpads.medium.com/error-handling-with-reactive-streams-77b6ec7231ff

Pros of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits as a . data _stream

Represent anything

that can be created on any thread

functionally __transformed

and consumed

« Simplified composition & reuse

« Enable complex data processing
pipelines that are easier to
understand, maintain, & debug

on any thread.

See www.tatvasoft.com/blog/java-reactive-programming

https://www.tatvasoft.com/blog/java-reactive-programming

Pros of Java Reactive Streams Platforms

jve Progra,)
eact e,

 Java reactive streams implementations 4
apply reactive programming principles :
to achieve several benefits —|—

Reactive Streams
(& Streams +
CompletableFutures)

Streams

Multiple
values

Completable

Objects Futures

Single
value

>

Synchronous Asynchronous

« Seamlessly integrates paradigms

 Integrates concurrency & asynchrony more
seamlessly than other Java paradigms

12

Pros of Java Reactive Streams Platforms

 Java reactive streams implementations List<Image> imgs = Observable
apply reactive programming principles .fromIterable (Options.

to achieve several benefits instance () .getUrlList())
.parallel (parallelism)

.runOn (scheduler)

.map (downloadAndStoreImage)
.sequential ()

.collect (toList())
.blockingGet() ;

« Seamlessly integrates paradigms

 Integrates concurrency & asynchrony more
seamlessly than other Java paradigms

* e.g., concurrent/asynchronous programming
looks much like synchronous programming

13

Pros of Java Reactive Streams Platforms

« Java reactive streams implementations Pparallel Streams Completable Futures
apply reactive programming principles r___!_!ifﬁg:i_i___g_l_‘___l fi .
to achieve several benefits Hf(ﬁfiiimj = j \, :
- Improved resource utilization B == ’m;:m oo m‘:yp 2
« Hides concurrent programming §| M{(}) - ey \7 / -

- Enhanced error handling |m§}s@ — Bl

Simplified composition & reuse

« Seamlessly integrates paradigms / *\ BT S
@O0 00000l
/ /*\ /*\ map({O- - > 1)
m \,L/ ﬁ\?j 8008600
These benefits are not unigue FeS
to reactive streams, however!! \)*/ T WER
Structured oy Reactive
Concurrency Streams

y Vv V ¥V V YV ¥V
—U—U—U—U—Q—D—D—T—\ﬁ

14

Cons of Java Reactive
Streams Platforms

15

Cons of Java Reactive Streams Platforms

« Reactive programming is not
appropriate in all situations

ONE SIZE
DOES NOT

FIT ALL

See dev.to/stealthmusic/dont-drink-too-much-reactive-cool-aid-20lk

https://dev.to/stealthmusic/dont-drink-too-much-reactive-cool-aid-20lk

Cons of Java Reactlve Streams PIatforms

 Reactive programming is not —
appropriate in all situations

Complexity

| Reactive Pr@gjr@m_m,ns

familiar with the OO style i
than the reactive style |

Cons of Java Reactive Streams Platforms

» Reactive programming is not x
appropriate in all situations

« Complexity

« Java developers are more
familiar with the OO style
than the reactive style

* The reactive style has a

4X

3X

2X

1X

Total (traditional)

Total (reactive)

0X
small startup

steeper learning curve

Total Ownership Cost

System Scale & Complexity

See www.youtube.com/watch?v=z0a0ON90gaAA

http://www.youtube.com/watch?v=z0a0N9OgaAA

Cons of Java Reactive Streams Platforms

: - inai A
Reactive programming is not v %E\W S
\ ‘) N N

\ A Kl‘;' ‘ .‘“

appropriate in all situations

« Debugging

» Can be harder due to async
& concurrent operations

See www.baeldung.com/spring-debugging-reactive-streams

http://www.baeldung.com/spring-debugging-reactive-streams

Cons of Java Reactive Streams Platforms
A CUULIEC I RIS WHEN YOUR STACKTRACEIS 200 LINES LONG

appropriate in all situations

« Debugging

« There's also often a lack : : |

. | I
of meaningful stack traces — BUTYOU STILLCAN'T LOGATE THEISSUE ‘

i
N6

See medium.com/digitalfrontiers/debugging-basics-in-project-reactor-5ef762c23df4

https://medium.com/digitalfrontiers/debugging-basics-in-project-reactor-5ef762c23df4

Cons of Java Reactive Streams PIatforms

« Reactive programming is not
appropriate in all situations

« Debugging

» Can be harder due to async
& concurrent operations

» There’s also often a lack
of meaningful stack traces

an
IFYOU DON'T WRITE BUGS

Cons of Java Reactive Streams Platforms

« Reactive programming is not
appropriate in all situations

Completable Futures

/page\ = 8 ‘
supplyAsync
D b i (getStartPage())
« Debugging
. Can be harder due to asyn m /e
an be harder due to async fimgtan = /page\ 1) /imgtm - Jpagen 7}
& ConCU rrent Operatlons .t}:::iii;:::i’:c(page)) (crawlHyperLinks
/ .thenApply (List: :size) (page))
 There’s also often a lack
of meaningful stack traces X} j
14 d26

/imgNum)\ . thenCombine (/imgNum),
(imgNum, imgNum) ->

/ Integer: :sum)

These benefits are not unigue
to reactive streams, however!!

22

Cons of Java Reactive Streams Platforms

« Reactive programming is not
appropriate in all situations

Productivity

Its essential to master the
reactive programming learning
curve to use it effectively!

See reactive-programming-project-reactor-webflux-oh-my-4bfa470feee’/

https://medium.com/intuit-engineering/reactive-programming-project-reactor-webflux-oh-my-4bfa470feee7

Cons of Java Reactive Streams Platforms

* There are various perspectives on
Java reactive programming vs. Java
structured concurrency!

Cons of Java Reactive Streams Platforms

* There are various perspectives on
Java reactive programming vs. Java
structured concurrency!

* Pro

Why Do We Need Java Reactive Programming?

-

Table of Content

* Why Do We need Reactive Programming?
* What are Reactive Systems?
* What Does Reactive Manifesto Mean In Reactive Systems?

« Difference Between Reactive Programming and Reactive Systems, Are They
Both the Same?

* Java Reactive Programming, How is it Done?
* Reactive Programming Benefits
* When to Use Reactive Programming?

* When Not to Use Reactive Programming?

See www.tatvasoft.com/blog/java-reactive-programming

http://www.tatvasoft.com/blog/java-reactive-programming

Cons of Java Reactive Streams Platforms

* There are various perspectives on
Java reactive programming vs. Java
structured concurrency!

® Q: What is the future of
 Con M reactive programming in Java
going forward?

”1 think [Project] Loom is going
to kill reactive programming.”
- Brian Goetz

See www.youtube.com/watch?v=9si7gK94glLo&t=1153s

http://www.youtube.com/watch?v=9si7gK94gLo&t=1153s

End of Evaluating Java
Programming Paradigms

27

