Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

jve Progra .
eact s

—

« Recognize how reactive programming
compares with other Java paradigms

* e.g., OO programming (including _|_
structured concurrency), & sync/
async functional programming

Reactive Streams
(& Streams +
CompletableFutures)

Streams

Multiple
values

Completable

Objects Futures

Single
value

>

Synchronous Asynchronous




Comparing Reactive
Programming with
Other Paradigms

3



Comparing Reactive Programming with Other Paradigms

Reactive programming is one of several Java programming paradigms
: ro

a

L) e @
o v .
B 3 Streams Reactive Streams
33 (& Streams +

= CompletableFutures)
()

- ; Completable

-g ‘_;’ Objects Futures

7))

Asynchronous

Synchronous




Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

Traditional blocking operations returning

a single value

Streams « Pros: Simplicity, straightforward error
handling

« Cons: Can be inefficient, may not be

suitable for long-duration operations

/

Multiple
values

Objects

Single
value

Synchronous Asynchronous

See www.geeksforgeeks.org/object-oriented-programming-o00ps-concept-in-java



http://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

-
byte[] downloadContent (URL url) {

byte[] buf = new byte[BUFSIZ];

Streams —
ByteArrayOutputStream os =

new ByteArrayOutputStream() ;

InputStream is = url.openStream() ;

Aﬁiiii for (int bytes;
(bytes = is.read(buf)) > 0;)

Objects L os.write(buf, 0, bytes);

Multiple
values

Single
value

Synchronous Asynchronous

See CommandLine/src/main/java/livelessons/utils/NetUtils.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/utils/NetUtils.java

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms

Java virtual threads & structured concurrency are
making synchronous programming cool again/!

9D g

ad

s 3 Streams

E > / \
/ +\ / +\ / +\E
\,L/ \,L/ \,L/

Qo

=3 Objects

» > \

Asynchronous

Synchronous

See docs.oracle.com/en/java/javase/21/core/structured-concurrency.html



https://docs.oracle.com/en/java/javase/21/core/structured-concurrency.html

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

9D g
o
s 3 Streams
- O
s >
\ Java streams framework, enables functional-
style operations on streams of elements
» Pros: Elegant operations on collections,
0o good for both CPU- & I/O-bound tasks
o3 Objects « Cons. Not inherently parallel unless
=S explicitly made so, still blocking

Synchronous Asynchronous

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html



https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

@ e

E—g Streams List<Image> imgs = getInput ()

3 S .parallelStream()

= i .filter (not (this: :urlCached))
.map (this: :downloadImage)
.multiMap (this: :applyFilters)
.toList () ;

2 o L J

23 Objects

N >

Asynchronous

Synchronous

See CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

Futures & Promises, like the Java ctive Programy,, .
completable futures framework 2
» Pros: Non-blocking, can improve

performance for I/O-bound tasks
« Cons: More complex control flow,

error handling can be complicateds

e?
Reactive Streams

(& Streams +
CompletableFutures)

Completable
Futures

Single
value

Synchronous Asynchronous

See www.baeldung.com/java-completablefuture



http://www.baeldung.com/java-completablefuture

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

9w
'..% 3 4 Y Reactive Streams
S © CompletableFuture (& Streams +
= . supplyAsync (reduce) CompletableFutures)
.thenApply
(BigFraction
: :toMixedString)
0 .thenAccept
2 (System.out: :println) ; Completable
=S . J Futures

Synchronous Asynchronous

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8



https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms

-ve Progra,
ct|\le 1721y,
/29

e

9y

'..% 3 Reactive Streams
ERY (& Streams +

= CompletableFutures)

A hybrid moadel
« Pros: can improve performance &
resource utilization within a structured

flow of control
« Cons. complexity in error handling &

debugging aue to the mixed paradigms ~

Synchronous Asynchronous

Completable
Futures

See www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa



http://www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

ve Progra,

9 v.eactlve S e
-_,% 3 Reactive Streams
ERY 4 (& Streams +
= List<Image> imgs = getInput() | CompletableFutures)

.stream/()

.map (checkUrlCachedAsync)

.map (downloadImageAsync)
] .flatMap (applyFiltersAsync)
E“—su .collect (toFuture()) Co?ﬂ::::Ie
» > .thenApply (lLogResults)

.jJoin(); ...

< . J Asynchronous

See CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuturel.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms

t' Pr ogra,

e?
Reactive Streams
(& Streams +
CompletableFutures)

Multiple
values

Reactive Streams, like those provided by

Project Reactor
» Pros: Non-blocking backpressure,

composability, & powerful concurrency

Completable
Futures

mode/
« Cons: Steeper learning curve, more
complex to understand & use correctly
Synchronous Asynchronous
See projectreactor.io



https://projectreactor.io/

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

ive Progray,,, .
act! Zy
9 g e %
-E' 3 Reactive Streams
S 8| List<Image> imgs = Flux (& Streams +
= .fromIterable (Options. CompletableFutures)
instance () .getUrlList())
.parallel (parallelism)
.runOn (scheduler)
.map (downloadAndStoreImage
%’,3 segéential 0 ge) Completable
s 6 ) _ Futures
(7] .collectList()
L .block() ; l
Synchronous Asynchronous

See RxJava/ex2/src/main/java/tests/ReactorTests.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/RxJava/ex2/src/main/java/tests/ReactorTests.java

End of Evaluating Java
Programming Paradigms

18



