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Learning Objectives in this Part of the Lesson
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« Recognize how reactive programming
compares with other Java paradigms

* e.g., OO programming (including _|_
structured concurrency), & sync/
async functional programming
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Comparing Reactive Programming with Other Paradigms

Reactive programming is one of several Java programming paradigms
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Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

Traditional blocking operations returning

a single value

Streams « Pros: Simplicity, straightforward error
handling

« Cons: Can be inefficient, may not be

suitable for long-duration operations
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See www.geeksforgeeks.org/object-oriented-programming-o00ps-concept-in-java



http://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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byte[] downloadContent (URL url) {

byte[] buf = new byte[BUFSIZ];

Streams —
ByteArrayOutputStream os =

new ByteArrayOutputStream() ;

InputStream is = url.openStream() ;

Aﬁiiii for (int bytes;
(bytes = is.read(buf)) > 0;)

Objects L os.write(buf, 0, bytes);
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See CommandLine/src/main/java/livelessons/utils/NetUtils.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/utils/NetUtils.java

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms

Java virtual threads & structured concurrency are
making synchronous programming cool again/!
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See docs.oracle.com/en/java/javase/21/core/structured-concurrency.html



https://docs.oracle.com/en/java/javase/21/core/structured-concurrency.html

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms
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style operations on streams of elements
» Pros: Elegant operations on collections,
0o good for both CPU- & I/O-bound tasks
o3 Objects « Cons. Not inherently parallel unless
=S explicitly made so, still blocking

Synchronous Asynchronous

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html



https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms
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E—g Streams List<Image> imgs = getInput ()

3 S .parallelStream()

= i .filter (not (this: :urlCached))
.map (this: :downloadImage)
.multiMap (this: :applyFilters)
.toList () ;
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See CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

Futures & Promises, like the Java ctive Programy,, .
completable futures framework 2
» Pros: Non-blocking, can improve

performance for I/O-bound tasks
« Cons: More complex control flow,

error handling can be complicateds
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See www.baeldung.com/java-completablefuture



http://www.baeldung.com/java-completablefuture

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms
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=S . J Futures

Synchronous Asynchronous

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8



https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms
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A hybrid moadel
« Pros: can improve performance &
resource utilization within a structured

flow of control
« Cons. complexity in error handling &

debugging aue to the mixed paradigms ~
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Completable
Futures

See www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa



http://www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms
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.stream/()

.map (checkUrlCachedAsync)

.map (downloadImageAsync)
] .flatMap (applyFiltersAsync)
E“—su .collect (toFuture()) Co?ﬂ::::Ie
» > .thenApply (lLogResults)

.jJoin(); ...
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See CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuturel.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms
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Reactive Streams, like those provided by

Project Reactor
» Pros: Non-blocking backpressure,

composability, & powerful concurrency

Completable
Futures

mode/
« Cons: Steeper learning curve, more
complex to understand & use correctly
Synchronous Asynchronous
See projectreactor.io



https://projectreactor.io/

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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See RxJava/ex2/src/main/java/tests/ReactorTests.java



https://github.com/douglascraigschmidt/LiveLessons/blob/master/RxJava/ex2/src/main/java/tests/ReactorTests.java

End of Evaluating Java
Programming Paradigms
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