
Evaluating Java Programming Paradigms

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles underlying the reactive programming

paradigm
• Know the Java reactive streams API & popular implementations of this API
• Learn how Java reactive streams maps to key reactive programming principles
• Recognize how reactive programming

compares with other Java paradigms
• e.g., OO programming (including

structured concurrency), & sync/
async functional programming

3

Comparing Reactive
Programming with
Other Paradigms

4

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

5

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

See www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java

Traditional blocking operations returning
a single value
• Pros: Simplicity, straightforward error

handling
• Cons: Can be inefficient, may not be

suitable for long-duration operations

http://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java

6

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

byte[] downloadContent(URL url) {
 byte[] buf = new byte[BUFSIZ];
 ByteArrayOutputStream os =
 new ByteArrayOutputStream();
 InputStream is = url.openStream();

 for (int bytes;
 (bytes = is.read(buf)) > 0;)
 os.write(buf, 0, bytes); ...

See CommandLine/src/main/java/livelessons/utils/NetUtils.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/utils/NetUtils.java

7

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

See docs.oracle.com/en/java/javase/21/core/structured-concurrency.html

Java virtual threads & structured concurrency are
making synchronous programming cool again!

https://docs.oracle.com/en/java/javase/21/core/structured-concurrency.html

8

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Java streams framework, enables functional-
style operations on streams of elements
• Pros: Elegant operations on collections,

good for both CPU- & I/O-bound tasks
• Cons: Not inherently parallel unless

explicitly made so, still blocking

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

9

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams List<Image> imgs = getInput()
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::downloadImage)
 .multiMap(this::applyFilters)
 .toList();

See CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

10

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

See www.baeldung.com/java-completablefuture

Futures & Promises, like the Java
completable futures framework
• Pros: Non-blocking, can improve

performance for I/O-bound tasks
• Cons: More complex control flow,

error handling can be complicateds

http://www.baeldung.com/java-completablefuture

11

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)
CompletableFuture
 .supplyAsync(reduce)
 .thenApply
 (BigFraction
 ::toMixedString)
 .thenAccept
 (System.out::println);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

12

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

See www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

A hybrid model
• Pros: can improve performance &

resource utilization within a structured
flow of control

• Cons: complexity in error handling &
debugging due to the mixed paradigms

http://www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

13

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)List<Image> imgs = getInput()
 .stream()
 .map(checkUrlCachedAsync)
 .map(downloadImageAsync)
 .flatMap(applyFiltersAsync)
 .collect(toFuture())
 .thenApply(logResults)
 .join(); ...

See CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

16

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

See projectreactor.io

Reactive Streams, like those provided by
Project Reactor
• Pros: Non-blocking backpressure,

composability, & powerful concurrency
model

• Cons: Steeper learning curve, more
complex to understand & use correctly

https://projectreactor.io/

17See RxJava/ex2/src/main/java/tests/ReactorTests.java

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)
List<Image> imgs = Flux
 .fromIterable(Options.
 instance().getUrlList())
 .parallel(parallelism)
 .runOn(scheduler)
 .map(downloadAndStoreImage)
 .sequential()
 .collectList()
 .block();

https://github.com/douglascraigschmidt/LiveLessons/blob/master/RxJava/ex2/src/main/java/tests/ReactorTests.java

18

End of Evaluating Java
Programming Paradigms

