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Learning Objectives in this Part of the Lesson

« Understand the key principles underlying
the reactive programming paradigm Responsive
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Learning Objectives in this Part of the Lesson

« Understand the key principles underlying
the reactive programming paradigm Responsive

« As well as the benefits of applying
these principles
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Overview of Reactive
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Overview of Reactive Programming

« Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

See en.wikipedia.org/wiki/Reactive programming



https://en.wikipedia.org/wiki/Reactive_programming

Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

It composes asynchronous & event-based
sequences using various types of operators
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Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

It composes asynchronous & event-based

Publisher

sequences using various types of operators
. Input x
« Ideally these operators are non-blocking

Operator (behavior f)

! | Output f(x)

Operator (behavior g)

! | Output g(f(x))

Subscriber

See en.wikipedia.org/wiki/Non-blocking algorithm
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Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

/

» These operators can be mapped
transparently to one or more threads
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Publisher

! | Input x

Operator (behavior f)

! | Output f(x)

Operator (behavior g)

! | Output g(f(x))

Subscriber

See en.wikipedia.org/wiki/Thread pool
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Overview of Reactive Programming

« Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

Represent anything

as | data _stream

that can be created on any thread

« Programs designed this functionally __transformed

way avoid the overhead
of constantly starting &
stopping many threads

and consumed

on any thread.

See en.wikipedia.org/wiki/ReactiveX
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Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios
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Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Processing user events
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Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Processing user events
* €.g., mouse movement/clicks, > | opear | —
touch events, GPS location
signals, etc. N
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See github.com/ReactiveX/RxAndroid
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Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Responding to—& processing
—latency-bound I/O events
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Overview of Reactive Programming
« Reactive programming is particularly useful to support certain scenarios, e.g.

« Responding to—& processing
—latency-bound I/O events, e.q.

« Handling async network
I/0 in a pub/sub environment

Twitter messages
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Event transformer

Event stream

See www.youtube.com/watch?v=z0a0N90gaAA
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Overview of Reactive Programming
« Reactive programming is particularly useful to support certain scenarios, e.g.

__________________________________________________

Microservices App

» Responding to—& processing

—latency-bound I/O events, e.g. [ ExchangeRate] - )|
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Clients

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html
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Overview of Reactive Programming

« Reactive programming is based on four key principles

Responsive

Elastic & %o /&9 Resilient

Message-
driven
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Overview of Reactive Programming

« Reactive programming is based on four key principles, e.qg.
* Responsive

» Provide rapid & consistent response
times

Establish reliable upper bounds to deliver
consistent quality of service & prevent delays

See en.wikipedia.org/wiki/Responsiveness



https://en.wikipedia.org/wiki/Responsiveness

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.
* Resilient

* The system remains
responsive, even in
the face of failure

Faillure of some operations should
not bring the entire system down

See en.wikipedia.org/wiki/Resilience (network)



https://en.wikipedia.org/wiki/Resilience_(network)

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.g.
» Elastic

A system should remain
responsive, even under
varying workload

Performance should
‘auto-scale” on multiple
cores andy/or computers

See en.wikipedia.org/wiki/Autoscaling



https://en.wikipedia.org/wiki/Autoscaling

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.
 Message-driven

« Asynchronous message-passing
ensures loose coupling, isolation,
& location transparency between
components

This principle is more of an /g

implementation detail”
compared with the others..

See en.wikipedia.org/wiki/Message-oriented middleware |
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Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.
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Reactive streams frameworks intentionally implement reactive programming principles




End of Overview of Reactive
Programming Principles
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