Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the key principles underlying
the reactive programming paradigm Responsive

Elastic WL\ A ®4 Resilient

Message-
driven

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

Learning Objectives in this Part of the Lesson

« Understand the key principles underlying
the reactive programming paradigm Responsive

« As well as the benefits of applying
these principles

Berefits, -

Message-
driven

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

Overview of Reactive
Programming

Overview of Reactive Programming

« Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

See en.wikipedia.org/wiki/Reactive programming

https://en.wikipedia.org/wiki/Reactive_programming

Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

It composes asynchronous & event-based
sequences using various types of operators

Publisher

! | Input x

Operator (behavior f)

! | Output f(x)

Operator (behavior g)

! | Output g(f(x))

Subscriber

Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

It composes asynchronous & event-based

Publisher

sequences using various types of operators
. Input x
« Ideally these operators are non-blocking

Operator (behavior f)

! | Output f(x)

Operator (behavior g)

! | Output g(f(x))

Subscriber

See en.wikipedia.org/wiki/Non-blocking algorithm

https://en.wikipedia.org/wiki/Non-blocking_algorithm

Overview of Reactive Programming

» Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

/

» These operators can be mapped
transparently to one or more threads

\\\\\\\\\\

S
9 Poo of worker threa®

\

Publisher

! | Input x

Operator (behavior f)

! | Output f(x)

Operator (behavior g)

! | Output g(f(x))

Subscriber

See en.wikipedia.org/wiki/Thread pool

https://en.wikipedia.org/wiki/Thread_pool

Overview of Reactive Programming

« Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

Represent anything

as | data _stream

that can be created on any thread

« Programs designed this functionally __transformed

way avoid the overhead
of constantly starting &
stopping many threads

and consumed

on any thread.

See en.wikipedia.org/wiki/ReactiveX

https://en.wikipedia.org/wiki/ReactiveX

Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios

. - N

Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Processing user events
w.; Bl ’;ﬁ

> A 42
N . g : S ‘ .

MG gt 2)
=\ .’
§ S ==

11

Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Processing user events
* €.g., mouse movement/clicks, > | opear | —
touch events, GPS location
signals, etc. N

v

OBSERVABLE

v

OBSERVER

o J

See github.com/ReactiveX/RxAndroid

https://github.com/ReactiveX/RxAndroid

Overview of Reactive Programming

« Reactive programming is particularly useful to support certain scenarios, e.g.

» Responding to—& processing
—latency-bound I/O events

13

Overview of Reactive Programming
« Reactive programming is particularly useful to support certain scenarios, e.g.

« Responding to—& processing
—latency-bound I/O events, e.q.

« Handling async network
I/0 in a pub/sub environment

Twitter messages

L ABN dMerert < AT OEN Magr - I TEN

Event transformer

Event stream

See www.youtube.com/watch?v=z0a0N90gaAA

http://www.youtube.com/watch?v=z0a0N9OgaAA

Overview of Reactive Programming
« Reactive programming is particularly useful to support certain scenarios, e.g.

__

Microservices App

» Responding to—& processing

—latency-bound I/O events, e.g. [ExchangeRate] -)|
' 7 ()44 |
. . i Trip SWA :

- Communicating between micro- Q k.
services in @ modern web-based , ﬁ 1!
computing environment 5 iAirpon‘List] o - J

Clients

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

Overview of Reactive Programming

« Reactive programming is based on four key principles

Responsive

Elastic & %o /&9 Resilient

Message-
driven

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

Overview of Reactive Programming

« Reactive programming is based on four key principles, e.qg.
* Responsive

» Provide rapid & consistent response
times

Establish reliable upper bounds to deliver
consistent quality of service & prevent delays

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.
* Resilient

* The system remains
responsive, even in
the face of failure

Faillure of some operations should
not bring the entire system down

See en.wikipedia.org/wiki/Resilience (network)

https://en.wikipedia.org/wiki/Resilience_(network)

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.g.
» Elastic

A system should remain
responsive, even under
varying workload

Performance should
‘auto-scale” on multiple
cores andy/or computers

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.
 Message-driven

« Asynchronous message-passing
ensures loose coupling, isolation,
& location transparency between
components

This principle is more of an /g

implementation detail”
compared with the others..

See en.wikipedia.org/wiki/Message-oriented middleware |

https://en.wikipedia.org/wiki/Message-oriented_middleware

Overview of Reactive Programming
« Reactive programming is based on four key principles, e.qg.

A akka
- streams
| \iac“ve - Reactive Strey
@ Reactive Streams .?;’ . Reactive Streams

Reactive Strean/ Reactive Streams Reactive Streams\

Reactive

VERT.X. (O p play

Reactor

Reactive
Mongo

Reactive streams frameworks intentionally implement reactive programming principles

End of Overview of Reactive
Programming Principles

22

