
Overview of Reactive
Programming Principles

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Responsive

Resilient

Message-
driven

Elastic

Learning Objectives in this Part of the Lesson
• Understand the key principles underlying

the reactive programming paradigm

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

3

Responsive

Resilient

Message-
driven

Elastic

Learning Objectives in this Part of the Lesson
• Understand the key principles underlying

the reactive programming paradigm
• As well as the benefits of applying

these principles

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

4

Overview of Reactive
Programming

5

• Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream

Overview of Reactive Programming

See en.wikipedia.org/wiki/Reactive_programming

https://en.wikipedia.org/wiki/Reactive_programming

6

• Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream
• It composes asynchronous & event-based

sequences using various types of operators

Overview of Reactive Programming

Publisher

Operator (behavior f)

Operator (behavior g)

Subscriber

Input x

Output f(x)

Output g(f(x))

7

• Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream
• It composes asynchronous & event-based

sequences using various types of operators
• Ideally these operators are non-blocking

Overview of Reactive Programming

See en.wikipedia.org/wiki/Non-blocking_algorithm

Publisher

Operator (behavior f)

Operator (behavior g)

Subscriber

Input x

Output f(x)

Output g(f(x))

https://en.wikipedia.org/wiki/Non-blocking_algorithm

8

• Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream
• It composes asynchronous & event-based

sequences using various types of operators
• These operators can be mapped

transparently to one or more threads

Overview of Reactive Programming

See en.wikipedia.org/wiki/Thread_pool

Publisher

Operator (behavior f)

Operator (behavior g)

Subscriber

Input x

Output f(x)

Output g(f(x))

https://en.wikipedia.org/wiki/Thread_pool

9

• Reactive programming is an asynchronous programming paradigm concerned
with processing streams of data & propagating changes throughout a stream
• It composes asynchronous & event-based

sequences using various types of operators
• These operators can be mapped

transparently to one or more threads
• Programs designed this

way avoid the overhead
of constantly starting &
stopping many threads

Overview of Reactive Programming

See en.wikipedia.org/wiki/ReactiveX

https://en.wikipedia.org/wiki/ReactiveX

10

• Reactive programming is particularly useful to support certain scenarios
Overview of Reactive Programming

11

• Reactive programming is particularly useful to support certain scenarios, e.g.
• Processing user events

Overview of Reactive Programming

12

• Reactive programming is particularly useful to support certain scenarios, e.g.
• Processing user events
• e.g., mouse movement/clicks,

touch events, GPS location
signals, etc.

Overview of Reactive Programming

See github.com/ReactiveX/RxAndroid

https://github.com/ReactiveX/RxAndroid

13

• Reactive programming is particularly useful to support certain scenarios, e.g.
• Processing user events
• Responding to—& processing

—latency-bound I/O events

Overview of Reactive Programming

14

• Reactive programming is particularly useful to support certain scenarios, e.g.
• Processing user events
• Responding to—& processing

—latency-bound I/O events, e.g.
• Handling async network

I/O in a pub/sub environment

Overview of Reactive Programming

See www.youtube.com/watch?v=z0a0N9OgaAA

http://www.youtube.com/watch?v=z0a0N9OgaAA

15

• Reactive programming is particularly useful to support certain scenarios, e.g.
• Processing user events
• Responding to—& processing

—latency-bound I/O events, e.g.
• Handling async network

I/O in a pub/sub environment
• Communicating between micro-

services in a modern web-based
computing environment

Overview of Reactive Programming

Microservices App

Clients
API
Gate
way

Trip

AirportList

AA

SWA

…

ExchangeRate

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

16

Responsive

Resilient

Message-
driven

Elastic

• Reactive programming is based on four key principles
Overview of Reactive Programming

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

17

• Reactive programming is based on four key principles, e.g.
• Responsive
• Provide rapid & consistent response

times

Overview of Reactive Programming

Establish reliable upper bounds to deliver
consistent quality of service & prevent delays

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

18

• Reactive programming is based on four key principles, e.g.
• Resilient
• The system remains

responsive, even in
the face of failure

Overview of Reactive Programming

Failure of some operations should
not bring the entire system down

See en.wikipedia.org/wiki/Resilience_(network)

https://en.wikipedia.org/wiki/Resilience_(network)

19

• Reactive programming is based on four key principles, e.g.
• Elastic
• A system should remain

responsive, even under
varying workload

Overview of Reactive Programming

Performance should
“auto-scale” on multiple
cores and/or computers

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling

20

• Reactive programming is based on four key principles, e.g.
• Message-driven
• Asynchronous message-passing

ensures loose coupling, isolation,
& location transparency between
components

Overview of Reactive Programming

See en.wikipedia.org/wiki/Message-oriented_middleware

This principle is more of an
“implementation detail”

compared with the others..

https://en.wikipedia.org/wiki/Message-oriented_middleware

21

• Reactive programming is based on four key principles, e.g.
Overview of Reactive Programming

Reactive streams frameworks intentionally implement reactive programming principles

22

End of Overview of Reactive
Programming Principles

