structuredTaskScope

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

try (var scope = new
StructuredTaskScope

R 76 th | q .ShutdownOnFailure()) {
€Cognize the classes use Supplier<String> user = scope

to program Java’s structure fork(() -> findUser()) :

concurrency model, e.g. Supplier<Integer> order = scope
.fork(() -> fetchOrder()) .,

 StructuredTaskScope scope.join () ;

« Both ShutdownOnFailure scope.throwIfFailed() ;

& ShutdownOnSuccess
return new Response

(user.get(),
order.get()) ;
}

We'll examine both Java 19/20 & Java 21 variants of StructuredTaskScope

Programming with Java
StructuredTaskScope

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic
API for Java structured concurrency

Class StructuredTaskScope<T>

java.lang.Object
jdk.incubator.concurrent.StructuredTaskScope<T>

Type Parameters:

T - the result type of tasks executed in the scope

All Implemented Interfaces:
AutoCloseable

Direct Known Subclasses:

StructuredTaskScope.ShutdownOnFailure,
StructuredTaskScope.ShutdownOnSuccess

public class StructuredTaskScope<T>
extends Object
implements AutoCloseable

A basic API for structured concurrency. StructuredTaskScope
supports cases where a task splits into several concurrent subtasks,
to be executed in their own threads, and where the subtasks must
complete before the main task continues. A StructuredTaskScope
can be used to ensure that the lifetime of a concurrent operation is
confined by a syntax block, just like that of a sequential operation
in structured programming.

See jdk/incubator/concurrent/StructuredTaskScope.html

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic
API for Java structured concurrency

« It splits a task into several subtasks
that run concurrently within a
syntax block

See jdk/incubator/concurrent/StructuredTaskScope.html

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic
API for Java structured concurrency

It defines several nested subclasses

See openjdk.org/jeps/11

https://openjdk.org/jeps/11

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic Class
API fOF Java Structured concurrency StructuredTaskScope.ShutdownOnFailure

java.lang.Object
jdk.incubator.concurrent.StructuredTaskScope<Object>
jdk.incubator.concurrent.StructuredTaskScope.ShutdownOnFailure

All Implemented Interfaces:
AutoCloseable

Enclosing class:

StructuredTaskScope<T>

It defines several nested subclasses

public static final class

° Sh utd own O N Fa | | ure StructuredTaskScope.ShutdownOnFailure
extends StructuredTaskScope<Object>
o Ca ptu reS the exce ptIOn Of the A StructuredTaskScope that captures the exception of the first
. subtask to complete abnormally. Once captured, it invokes the
ﬁ I‘St SU btaSk tO COm plete shutdown method to interrupt unfinished threads and wakeup the
owner. The policy implemented by this class is intended for cases
a bnOrma | Iy where the results for all subtasks are required ("invoke all"); if any

subtask fails then the results of other unfinished subtasks are no
longer needed.

See jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope.ShutdownOnFailure.himl

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java StructuredTaskScope

API for Java structured concurrency

« StructuredTaskScope is the basic e‘;‘? 7—_?'?;.‘. B T 1 ST
1

| Tl) -

ty By o7 \ ¥ g -~

\\ | 'f:‘ \ :
\

) .
) “ . JUA
5
f’\" : '

! §
J | '& A a A, z -
\" , 2 S I
. f.P-' l{ R) 'y ' N
l kil ¢ &Y 3 \
X
\

It defines several nested subclasses
« ShutdownOnFailure

« Captures the exception of the
first subtask to complete
abnormally

 Essentially like “invokeAll()”

See howtodoinjava.com/java/multi-threading/executorservice-invokeall

https://howtodoinjava.com/java/multi-threading/executorservice-invokeall/

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic
API for Java structured concurrency

It defines several nested subclasses

« ShutdownOnSuccess

« Captures the result of the
first subtask to complete
successfully

Class StructuredTaskScope.ShutdownOnSuccess<T>

java.lang.Object
jdk.incubator.concurrent.StructuredTaskScope<T>
jdk.incubator.concurrent.StructuredTaskScope.ShutdownOnSuccess<T>

Type Parameters:

T - the result type

All Implemented Interfaces:
AutoCloseable

Enclosing class:

StructuredTaskScope<T>

public static final class StructuredTaskScope.ShutdownOnSuccess<T>
extends StructuredTaskScope<T>

A StructuredTaskScope that captures the result of the first subtask to complete
successfully. Once captured, it invokes the shutdown method to interrupt
unfinished threads and wakeup the owner. The policy implemented by this class is
intended for cases where the result of any subtask will do ("invoke any") and
where the results of other unfinished subtask are no longer needed.

Unless otherwise specified, passing a null argument to a method in this class will
cause a NullPointerException to be thrown.

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

Programming with Java StructuredTaskScope

» StructuredTaskScope is the basic
API for Java structured concurrency

It defines several nested subclasses

« ShutdownOnSuccess

« Captures the result of the
first subtask to complete
successfully

« Essentially like “invokeAny()”

See howtodoinjava.com/java/multi-threading/executorservice-invokeany

https://howtodoinjava.com/java/multi-threading/executorservice-invokeany/

Programming with Java
ShutdownOnFailure

11

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope

with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope
.fork(() -> findUser())
Supplier<Integer> order = scope
.fork(() -> fetchOrder())

scope.join() ;
scope. throwIfFailed() ;

return new Response
(user.get(),
order.get()) ;

See howtodoinjava.com/java/multi-threading/structured-concurrency

https://howtodoinjava.com/java/multi-threading/structured-concurrency

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope
with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope
.fork(() -> f£indUser())

upplier<Integer> order = scope
//////////S .fork(() -> fetchOrder())
This example uses the Java 21

version of ShutdownOnFailure
that uses the Supplier interface

scope.join() ;
scope. throwIfFailed() ;

return new Response
(user.get(),
order.get()) ;

See java.base/java/util/concurrent/StructuredTaskScope.ShutdownOnFailure.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope
with the try-with-resources .ShutdownOnFailure()) {
feature Future<String> user = scope
.fork(() -> findUser())
Future<Integer> order = scope
.fork(() -> fetchOrder())

scope.join() ;

The Java 19 & 20 version scope . throwIfFailed () ;

of ShutdownOnFailure uses
Future instead of Supplier

return new Response
(user.get(),
order.get()) ;

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

https://docs.oracle.com/en/java/javase/20/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope
with the try-with-resources .ShutdownOnFailure()) ({
feature Supplier<String> user = scope
i we " .fork(() -> f£indUser())
It pI‘OVIqu mVOkeA”O Supplier<Integer> order = scope
semantics that run all _fork (() -> fetchOrder()) ;
requests in parallel
RERI= T scope. join() ;
scope. throwIfFailed() ;

b 2 T '.-'*.‘.s—» ra . o= Y 1
IR Ui Vool T P
L Vb S o ok return new Response

(user.get(),
order.get()) ;

See howtodoinjava.com/java/multi-threading/executorservice-invokeall

https://howtodoinjava.com/java/multi-threading/executorservice-invokeall/

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope

with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope

: w: o .fork(() -> findUser()):;
It prOVIdeS mVOkeA”O Supplier<Integer> order = scope

semantics that run all _fork(() -> fetchOrder()) ;
requests in parallel
scope.join() ;

scope. throwIfFailed() ;

Creates a new virtual Thread
every time fork() is called return new Response

(user.get(),
order.get()) ;

See jdk/incubator/concurrent/StructuredTaskScope.html#fork

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope

with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope

.fork (() -> findUser());
Supplier<Integer> order = scope
.fork (() -> fetchOrder());

« Its join() method provides scope. join() ;
e Hlebiy / scope.throwIfFailed() ;

- - -) return new Response
This barrier synchronizer waits (user.get (),
for all threads to finish or for order.get()) ;
the task scope to shut down }
If an exception should occur

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope
with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope
.fork(() -> findUser())
Supplier<Integer> order = scope
.fork(() -> fetchOrder())

scope.join() ;
scope. throwIfFailed() ;

« It can _a|50 handle_any return new Response
exceptions that arise (user.get (),

der.get ;
Throws an Exception if a sub- } order.get())
task completed abnormally

See jdk/incubator/concurrent/Structured TaskScope.ShutdownOnFRailure. html#throwIfFailed

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java ShutdownOnFailure

« ShutdownOnFailure is used try (var scope = new StructuredTaskScope
with the try-with-resources .ShutdownOnFailure()) {
feature Supplier<String> user = scope
.fork(() -> findUser())
Supplier<Integer> order = scope
.fork(() -> fetchOrder())

scope. join () ; | WANT ANSWERS
I
scope.throwIfFailed() ; Y,’;

return new Response J 5
(user.get (), |WA"T THE
« Users can access Supplier order.get()); TRUTH!!!

results without blocking }

Return result via the Supplier get() method

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html#get

https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Programming with Java
ShutdownOnSuccess

20

Programming with Java ShutdownOnSuccess

« ShutdownOnSuccess also try (var scope = new StructuredTaskScope

uses try-with-resources .ShutdownOnSuccess
<List<BigFraction>>()) {

scope.fork(() -> quickSort(list)) ;

scope.fork(() -> heapSort(list));
scope. join() ;

return scope.result();

See howtodoinjava.com/java/multi-threading/structured-concurrency

https://howtodoinjava.com/java/multi-threading/structured-concurrency

Programming with Java ShutdownOnSuccess

« ShutdownOnSuccess also try (var scope = new StructuredTaskScope

uses try-with-resources .ShutdownOnSuccess
<List<BigFraction>>()) {

scope.fork (() -> quickSort(list));

o It provides “invokeAny()”
semantics that take only
the fastest result

scope.fork (() -> heapSort(list));
scope. join() ;

return scope.result();

See howtodoinjava.com/java/multi-threading/executorservice-invokeany

https://howtodoinjava.com/java/multi-threading/executorservice-invokeany/

Programming with Java ShutdownOnSuccess

e ShutdownOnSuccess also
uses try-with-resources

o It provides “invokeAny()”
semantics that take only
the fastest result

Run quicksort &
heapsort in parallel!

try (var scope = new StructuredTaskScope

}

.ShutdownOnSuccess
<List<BigFraction>>()) {
scope.fork(() -> quickSort(list));
scope.fork(() -> heapSort(list));

scope. join() ;

return scope.result();

See jdk/incubator/concurrent/StructuredTaskScope.html#fork

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java ShutdownOnSuccess

« ShutdownOnSuccess also try (var scope = new StructuredTaskScope
uses try-with-resources .ShutdownOnSuccess

° It prOV|deS \\InvokeAny()n <List<Bigf'ract:?.on>>()) { .
semantics that take only scope.fork(() -> quickSort(list));

the fastest result

scope.fork(() -> heapSort(list));

Wait for the first | ______— scope.join() ;
result to complete

return scope.result();

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java ShutdownOnSuccess

« ShutdownOnSuccess also try (var scope = new StructuredTaskScope
uses try-with-resources .ShutdownOnSuccess

° It prOV|deS \\InvokeAny()n <List<BigE"ract:i.on>>()) { .
semantics that take only scope.fork(() -> quickSort(list));

the faSteStreUIt scope.fork(() -> heapSort(list));

scope. join() ;

return scope.result();

\

Return the first result

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html#result

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

End of Programming with
Java StructuredTaskScope

26

