
Programming with Java
StructuredTaskScope

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand Java’s structured
concurrency model

• Recognize the classes used
to program Java’s structure
concurrency model, e.g.
• ThreadPerTaskExecutor
• StructuredTaskScope
• Both ShutdownOnFailure

& ShutdownOnSuccess

Learning Objectives in this Part of the Lesson
try (var scope = new
 StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

We’ll examine both Java 19/20 & Java 21 variants of StructuredTaskScope

3

Programming with Java
StructuredTaskScope

4

• StructuredTaskScope is the basic
API for Java structured concurrency

See jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java StructuredTaskScope

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

5

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

See jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java StructuredTaskScope

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

6

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

• It defines several nested subclasses

See openjdk.org/jeps/11

Programming with Java StructuredTaskScope

https://openjdk.org/jeps/11

7

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

• It defines several nested subclasses
• ShutdownOnFailure
• Captures the exception of the

first subtask to complete
abnormally

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java StructuredTaskScope

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

8

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

• It defines several nested subclasses
• ShutdownOnFailure
• Captures the exception of the

first subtask to complete
abnormally
• Essentially like “invokeAll()”

Programming with Java StructuredTaskScope

See howtodoinjava.com/java/multi-threading/executorservice-invokeall

https://howtodoinjava.com/java/multi-threading/executorservice-invokeall/

9

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

• It defines several nested subclasses
• ShutdownOnFailure
• ShutdownOnSuccess
• Captures the result of the

first subtask to complete
successfully

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

Programming with Java StructuredTaskScope

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

10

• StructuredTaskScope is the basic
API for Java structured concurrency
• It splits a task into several subtasks

that run concurrently within a
syntax block

• It defines several nested subclasses
• ShutdownOnFailure
• ShutdownOnSuccess
• Captures the result of the

first subtask to complete
successfully
• Essentially like “invokeAny()”

Programming with Java StructuredTaskScope

See howtodoinjava.com/java/multi-threading/executorservice-invokeany

https://howtodoinjava.com/java/multi-threading/executorservice-invokeany/

11

Programming with Java
ShutdownOnFailure

12

• ShutdownOnFailure is used
with the try-with-resources
feature

Programming with Java ShutdownOnFailure

See howtodoinjava.com/java/multi-threading/structured-concurrency

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

https://howtodoinjava.com/java/multi-threading/structured-concurrency

13

• ShutdownOnFailure is used
with the try-with-resources
feature

Programming with Java ShutdownOnFailure

See java.base/java/util/concurrent/StructuredTaskScope.ShutdownOnFailure.html

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

This example uses the Java 21
version of ShutdownOnFailure
that uses the Supplier interface

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/StructuredTaskScope.ShutdownOnFailure.html

14

• ShutdownOnFailure is used
with the try-with-resources
feature

Programming with Java ShutdownOnFailure

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Future<String> user = scope
 .fork(() -> findUser());
 Future<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

The Java 19 & 20 version
of ShutdownOnFailure uses
Future instead of Supplier

https://docs.oracle.com/en/java/javase/20/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

15

• ShutdownOnFailure is used
with the try-with-resources
feature
• It provides “invokeAll()”

semantics that run all
requests in parallel

Programming with Java ShutdownOnFailure

See howtodoinjava.com/java/multi-threading/executorservice-invokeall

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

https://howtodoinjava.com/java/multi-threading/executorservice-invokeall/

16

• ShutdownOnFailure is used
with the try-with-resources
feature
• It provides “invokeAll()”

semantics that run all
requests in parallel

Programming with Java ShutdownOnFailure

See jdk/incubator/concurrent/StructuredTaskScope.html#fork

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

Creates a new virtual Thread
every time fork() is called

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

17

• ShutdownOnFailure is used
with the try-with-resources
feature
• It provides “invokeAll()”

semantics that run all
requests in parallel

• Its join() method provides
extra flexibility

Programming with Java ShutdownOnFailure

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

This barrier synchronizer waits
for all threads to finish or for
the task scope to shut down
if an exception should occur

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

18

• ShutdownOnFailure is used
with the try-with-resources
feature
• It provides “invokeAll()”

semantics that run all
requests in parallel

• Its join() method provides
extra flexibility

• It can also handle any
exceptions that arise

Programming with Java ShutdownOnFailure

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#throwIfFailed

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}Throws an Exception if a sub-

task completed abnormally

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

19

• ShutdownOnFailure is used
with the try-with-resources
feature
• It provides “invokeAll()”

semantics that run all
requests in parallel

• Its join() method provides
extra flexibility

• It can also handle any
exceptions that arise

• Users can access Supplier
results without blocking

Programming with Java ShutdownOnFailure

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html#get

try (var scope = new StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

Return result via the Supplier get() method

https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

20

Programming with Java
ShutdownOnSuccess

21

• ShutdownOnSuccess also
uses try-with-resources

Programming with Java ShutdownOnSuccess

See howtodoinjava.com/java/multi-threading/structured-concurrency

try (var scope = new StructuredTaskScope
 .ShutdownOnSuccess
 <List<BigFraction>>()) {
 scope.fork(() -> quickSort(list));

 scope.fork(() -> heapSort(list));

 scope.join();

 return scope.result();
}

https://howtodoinjava.com/java/multi-threading/structured-concurrency

22

• ShutdownOnSuccess also
uses try-with-resources
• It provides “invokeAny()”

semantics that take only
the fastest result

Programming with Java ShutdownOnSuccess
try (var scope = new StructuredTaskScope
 .ShutdownOnSuccess
 <List<BigFraction>>()) {
 scope.fork(() -> quickSort(list));

 scope.fork(() -> heapSort(list));

 scope.join();

 return scope.result();
}

See howtodoinjava.com/java/multi-threading/executorservice-invokeany

https://howtodoinjava.com/java/multi-threading/executorservice-invokeany/

23

• ShutdownOnSuccess also
uses try-with-resources
• It provides “invokeAny()”

semantics that take only
the fastest result

Programming with Java ShutdownOnSuccess
try (var scope = new StructuredTaskScope
 .ShutdownOnSuccess
 <List<BigFraction>>()) {
 scope.fork(() -> quickSort(list));

 scope.fork(() -> heapSort(list));

 scope.join();

 return scope.result();
}

Run quicksort &
heapsort in parallel!

See jdk/incubator/concurrent/StructuredTaskScope.html#fork

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

24

• ShutdownOnSuccess also
uses try-with-resources
• It provides “invokeAny()”

semantics that take only
the fastest result

Programming with Java ShutdownOnSuccess
try (var scope = new StructuredTaskScope
 .ShutdownOnSuccess
 <List<BigFraction>>()) {
 scope.fork(() -> quickSort(list));

 scope.fork(() -> heapSort(list));

 scope.join();

 return scope.result();
}

Wait for the first
result to complete

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

25

• ShutdownOnSuccess also
uses try-with-resources
• It provides “invokeAny()”

semantics that take only
the fastest result

Programming with Java ShutdownOnSuccess

See jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html#result

try (var scope = new StructuredTaskScope
 .ShutdownOnSuccess
 <List<BigFraction>>()) {
 scope.fork(() -> quickSort(list));

 scope.fork(() -> heapSort(list));

 scope.join();

 return scope.result();
}

Return the first result

https://download.java.net/java/early_access/jdk19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnSuccess.html

26

End of Programming with
Java StructuredTaskScope

