
Programming with Java
TaskPerThreadExecutor

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand Java’s structured
concurrency model

• Recognize the classes used
to program Java’s structure
concurrency model, e.g.
• ThreadPerTaskExecutor

Learning Objectives in this Part of the Lesson
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()) {
 IntStream
 .range(0, 1_000_000)

 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

3

Programming with Java
ThreadPerTaskExecutor

4

• This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

Programming with Java ThreadPerTaskExecutor

See docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

5

• This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface
• The newThreadPerTaskExecutor()

factory method starts a new
Thread for each task
• The type of the Thread can be

designated via a ThreadFactory

Programming with Java ThreadPerTaskExecutor

See java/util/concurrent/Executors.html#newThreadPerTaskExecutor

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

6

• This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface
• The newThreadPerTaskExecutor()

factory method starts a new
Thread for each task

• The newVirtualThreadPerTask
Executor() starts a new Java
virtual Thread for each task

Programming with Java ThreadPerTaskExecutor

See java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

7

• These Executors are used
with the Java try-with-
resources feature

Programming with Java ThreadPerTaskExecutor

See howtodoinjava.com/java/multi-threading/virtual-threads/#43-using-executorsnewvirtualthreadpertaskexecutor

try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

Creates an Executor that starts a
new virtual Thread for each task

https://howtodoinjava.com/java/multi-threading/virtual-threads/

8

• These Executors are used
with the Java try-with-
resources feature

Programming with Java ThreadPerTaskExecutor
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

Generate 10 million iterations

9

• These Executors are used
with the Java try-with-
resources feature

Programming with Java ThreadPerTaskExecutor
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

Submit 10 million tasks, each of which
is executed via a Java virtual Thread

10

• These Executors are used
with the Java try-with-
resources feature

Programming with Java ThreadPerTaskExecutor
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

All these submitted virtual threads must
complete by the end of the enclosing scope

11

• These Executors are used
with the Java try-with-
resources feature
• This mechanism is simple,

but also limited

Programming with Java ThreadPerTaskExecutor
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));
}

12

• These Executors are used
with the Java try-with-
resources feature
• This mechanism is simple,

but also limited
• It lacks support for fine-

grained exception handling,
“invoke any” semantics, &
automatic task cancellation

Programming with Java ThreadPerTaskExecutor
try (var executor = Executors
 .newVirtualThreadPerTaskExecutor()){
 IntStream
 .range(0, 10_000_000)
 .forEach(i -> executor
 .submit(() -> {
 Thread.sleep(Duration
 .ofSeconds(1));
 return i;
 }));

13

• These Executors are used
with the Java try-with-
resources feature
• This mechanism is simple,

but also limited
• It lacks support for fine-

grained exception handling,
“invoke any” semantics, &
automatic task cancellation

• However, it can serve as a
“drop-in” replacement for
common ExecutorService
use-cases

Programming with Java ThreadPerTaskExecutor
@Bean(APPLICATION_TASK_
 EXECUTOR_BEAN_NAME) public
AsyncTaskExecutor asyncTaskExecutor(){
 return new TaskExecutorAdapter
 (Executors
 .newVirtualThreadPerTaskExecutor());
}

See spring.io/blog/2022/10/11/embracing-virtual-threads

This Bean configures the Spring WebMVC
platform so it will create a Java virtual
thread to process each client request

https://spring.io/blog/2022/10/11/embracing-virtual-threads

14

• These Executors are used
with the Java try-with-
resources feature
• This mechanism is simple,

but also limited
• These limitations motivate

the need for the new Java
StructuredTaskScope

Programming with Java ThreadPerTaskExecutor

See upcoming lesson on “Programming with Java StructuredTaskScope”

try (var scope = new
 StructuredTaskScope
 .ShutdownOnFailure()) {
 Supplier<String> user = scope
 .fork(() -> findUser());
 Supplier<Integer> order = scope
 .fork(() -> fetchOrder());

 scope.join();
 scope.throwIfFailed();

 return new Response
 (user.get(),
 order.get());
}

15

End of Programming with
Java TaskPerThreadExecutor

