TaskPerThreadExecutor

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

try (var executor = Executors
.newVirtualThreadPerTaskExecutor () ) {

IntStream
.range (0, 1 000 _000)

« Recognize the classes used
to program Java’s structure

concurrency model, e.g. .forEach (i -> executor

 ThreadPerTaskExecutor .submit (() -> {
Thread.sleep (Duration

.0fSeconds (1)) ;
return 1i;

})):




Programming with Java
ThreadPerTaskExecutor




Programming with Java ThreadPerTaskExecutor

e This feature adds two new static ExecutorService newThreadPerTaskExecutor
faCtOry methOdS in the Java (ThreadFactory threadFactory)
Executors utility class & Ereview:
eXten dS the EXECU tOrserVice Creates an Executor that starts a new Thread for each task.
interface static ExecutorService newVirtualThreadPerTaskExecutor()

Preview.

Creates an Executor that starts a new virtual Thread for each task.

public interface Exe orSeryice
extends Executor,jAutoCloseable

An Executor that provides methods to
manage termination and methods that can
produce a Future for tracking progress of
one or more asynchronous tasks.

See docs.orade.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java ThreadPerTaskExecutor

This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

» The newThreadPerTaskExecutor()
factory method starts a new
Thread for each task

» The type of the Thread can be
designated via a ThreadFactory

newThreadPerTaskExecutor

public static ExecutorService newThreadPerTaskExecutor
(ThreadFactory threadFactory)

s N
newThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or

upgraded to permanent features of the Java platform.
e v

Creates an Executor that starts a new Thread for each task. The
number of threads created by the Executor is unbounded.

Invoking cancel(true) on a Future representing the pending
result of a task submitted to the Executor will interrupt the
thread executing the task.

Parameters:

threadFactory - the factory to use when creating new threads
Returns:

a new executor that creates a new Thread for each task

See java/util/concurrent/Executors.html#newThreadPerTaskExecutor



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java ThreadPerTaskExecutor

« This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

 The newVirtualThreadPerTask
Executor() starts a new Java
virtual Thread for each task

newVirtualThreadPerTaskExecutor

public
static ExecutorService newVirtualThreadPerTaskExecutor()

P
newVirtualThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newVirtualThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or upgraded

to permanent features of the Java platform.
&

N

Creates an Executor that starts a new virtual Thread for each task.
The number of threads created by the Executor is unbounded.

This method is equivalent to invoking
newThreadPerTaskExecutor(ThreadFactory) EVEEW with a thread
factory that creates virtual threads.

Returns:
a new executor that creates a new virtual Thread for each task

Throws:

UnsupportedOperationException - if preview features are not
enabled

See java/util/concurrent/Executors.html#newVirtual ThreadPerTaskExecutor()



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 000 000)
.forEach (1 -> executor
.submit(() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;
return 1i;
1))
}

Creates an Executor that starts a
new virtual Thread for each task

See howtodoinjava.com/java/multi-threading/virtual-threads/ #43-using-executorsnewvirtualthreadpertaskexecutor



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 000 _000)

.forEach (i -> executor
.submit(() -> {
Thread.sleep (Duration

Generate 10 million iterations .ofSeconds (1)) ;

return i;

}));




Programming with Java ThreadPerTaskExecutor

 These Executors are used

with the Java try-with-

resources feature

s

.

ALY

try (var executor = Executors
.newVirtualThreadPerTaskExecutor () ) {
IntStream
.range (0, 10 _000_000)
.forEach (1 -> executor
.submit (() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;

return 1i;

}));

Submit 10 miflion tasks, each of which
s executed via a Java virtual Thread




Programming with Java ThreadPerTaskExecutor

 These Executors are used
with the Java try-with-
resources feature

try (var executor = Executors
.newVirtualThreadPerTaskExecutor()) {
IntStream
.range (0, 10 _000_000)
.forEach (1 -> executor
.submit (() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;

return 1i;

1))
} \
All these submitted virtual threads must
complete by the end of the enclosing scope

10



Programming with Java ThreadPerTaskExecutor

 These Executors are used
with the Java try-with-
resources feature

* This mechanism is simple,
but also limited

try (var executor = Executors

.newVirtualThreadPerTaskExecutor () ) {
IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit(() -> {
Thread.sleep (Duration

.0ofSeconds (1)) ;
return 1i;

11



Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit(() -> {

* This mechanism is simple,
but also limited

e It lacks support for fine- Thread.sleep (Duration
grained exception handling, _ .ofSeconds (1)) ;
“invoke any” semantics, & return 1;

automatic task cancellation

12



Programming with Java ThreadPerTaskExecutor

 These Executors are used @Bean (APPLICATION TASK
with the Java try-with- EXECUTOR BEAN NAME) public
resources feature AsyncTaskExecutor asyncTaskExecutor () {
: : L return new TaskExecutorAdapter
* This mechanism is simple,

(Executors
.newVirtualThreadPerTaskExecutor()) ;
| /
This Bean configures the Spring WebMVC

platform so it will create a Java virtual
thread to process each client request

but also limited

 However, it can serve as a
“drop-in” replacement for
common ExecutorService
use-cases

See spring.io/blog/2022/10/11/embracing-virtual-threads



https://spring.io/blog/2022/10/11/embracing-virtual-threads

Programming with Java ThreadPerTaskExecutor

« These Executors are used try (var scope = new
with the Java try-with- StructuredTaskScope
resources feature .ShutdownOnFailure()) {

Supplier<String> user = scope
.fork(() -> findUser())
Supplier<Integer> order = scope

« These limitations motivate .fork(() -> fetchOrder())
the need for the new Java o
StructuredTaskScope scope.join();

scope. throwIfFailed() ;

return new Response
(user.get(),
order.get()) ;

}

See upcoming lesson on " Programming with Java StructurediaskScope’




End of Programming with
Java TaskPerThreadExecutor

15



