Structured Goncurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Authors

 Recognize the classes used e

Type

to program Java’s structure Statis

concurrency model

Release
Component
Discussion
Reviewed by
Created
Updated
Issue

JEP 428: Structured Concurrency (Incubator)

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Closed/Delivered

19

core-libs

loom dash dev at openjdk dot java dot net
Alex Buckley, Brian Goetz
2021/11/15 15:01
2022/08/10 15:58

8277129

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Programming with Java
Structured Concurrency

Programming with Java Structured Concurrency

« Java structured concurrency enforces
a hierarchy of tasks & subtasks

A parent task may contain
multiple nested levels of subtasks

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Programming with Java Structured Concurrency

« Java structured concurrency enforces
a hierarchy of tasks & subtasks

« The lifetime of a subtask must be
confined to the syntactic block of
its parent task

All these subtasks must complete
before each parent task can complete

Programming with Java Structured Concurrency

« Java structured concurrency enforces
a hierarchy of tasks & subtasks

« Sibling subtask lifetimes are nested
within a parent task

These sibling subtasks are nested
within their parent task (recursively)

Programming with Java Structured Concurrency

« Java structured concurrency enforces
a hierarchy of tasks & subtasks

« Sibling subtask lifetimes are nested
within a parent task

« Tasks (& subtasks) can thus be
reasoned about & managed as
a unit

Programming with Java Structured Concurrency
« Structured concurrency is a great match. for virtual threads

e

Proyeat Loom

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Programming with Java Structured Concurrency

« Structured concurrency is a great match. for virtual threads

« Virtual threads are lightweight, so try (var scope = new

they can represent any concurrent StructuredTaskScope
unit of behavior .ShutdownOnFailure()) {

var downloadedImages = ...;

for (URL url : urllist)
downloadededImages.add (scope
.fork(() ->

Even behavior that involves I/0O! downloadImage (url)));

scope.join() ;

return downloadedImages;

}
See github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex4

Programming with Java Structured Concurrency

« Structured concurrency is a great match. for virtual threads
try (var scope = new
StructuredTaskScope
.ShutdownOnFailure()) {
var downloadedImages = ...;

« Structured concurrency ensures

that virtual threads are correctly for (URL url : urlList)
& robustly coordinated downloadededImages.add (scope
.fork(() ->

This block of code doesn’t exit downloadImage (url)))

until all images are downloaded | ———
scope.join() ;

return downloadedImages;

}
10

Programming with Java Structured Concurrency

« Java structured concurrency is evolving

JEP 428: Structured Concurrency (Incubator)

Authors
Owner
Type

Scope
Status
Release
Component
Discussion
Reviewed by
Created
Updated
Issue

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Closed /Delivered

19

core-libs

loom dash dev at openjdk dot java dot net
Alex Buckley, Brian Goetz
2021/11/15 15:01
2022/08/10 15:58

8277129

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Programming with Java Structured Concurrency

« Java structured concurrency is evolving
 StructuredTaskScope

Class StructuredTaskScope<T>

java.lang.Object
jdk.incubator.concurrent.StructuredTaskScope<T>

Type Parameters:

T - the result type of tasks executed in the scope

All Implemented Interfaces:
AutoCloseable

Direct Known Subclasses:

StructuredTaskScope.ShutdownOnFailure,
StructuredTaskScope.ShutdownOnSuccess

public class StructuredTaskScope<T>
extends Object
implements AutoCloseable

A basic API for structured concurrency. StructuredTaskScope
supports cases where a task splits into several concurrent subtasks,
to be executed in their own threads, and where the subtasks must
complete before the main task continues. A StructuredTaskScope
can be used to ensure that the lifetime of a concurrent operation is
confined by a syntax block, just like that of a sequential operation
in structured programming.

See jdk/incubator/concurrent/Structured TaskScope.html

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java Structured Concurrency
» Java structured concurrency is evolving try (var scope = new

StructuredTaskScope
o Str redTask e
StructuredTas Scop .ShutdownOnFailure()) {

» Splits a task into several concurrent var downloadedImages = ...;
subtasks within a syntax block

for (URL url : urllist)
downloadededImages
.add (scope
.fork(() ->
downloadImage (url))) ;

scope. join() ;

return downloadedImages;

}

See openjdk.org/jeps/11

https://openjdk.org/jeps/11

Programming with Java Structured Concurrency

« Java structured concurrency is evolving

 StructuredTaskScope

« Added in Java 19 as an “incubator
feature”

« Incubator features may iterate
several times to get feedback &
either be finalized or removed

Class StructuredTaskScope<T>

Type Parameters:
T - the result type of tasks executed in the scope

All Implemented Interfaces:
AutoCloseable

Direct Known Subclasses:

StructuredTaskScope.ShutdownOnFailure,
StructuredTaskScope.ShutdownOnSuccess

public class StructuredTaskScope<T>
extends Object
implements AutoCloseable

A basic API for structured concurrency. StructuredTaskScope
urrent subtasks,

subtasks must
uredTaskScope
can be used to ensure that the lifetime of a concurrent operation is
confined by a syntax block, just like that of a sequential operation
in structured programming.

See openjdk.org/jeps/11

https://openjdk.org/jeps/11

Programming with Java Structured Concurrency

« Java structured concurrency is evolving

« Executors/ExecutorService

newThreadPerTaskExecutor

public static ExecutorService newThreadPerTaskExecutor
(ThreadFactory threadFactory)

4 N\
newThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or

upgraded to permanent features of the Java platform.
- J

Creates an Executor that starts a new Thread for each task. The
number of threads created by the Executor is unbounded.

Invoking cancel(true) on a Future representing the pending
result of a task submitted to the Executor will interrupt the
thread executing the task.

Parameters:
threadFactory - the factory to use when creating new threads

Returns:

a new executor that creates a new Thread for each task

See java/util/concurrent/Executors.html#newThreadPerTaskExecutor

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java Structured Concurrency

 Java structured concurrency is evolving try (var executor = Executors
.newVirtualThreadPerTaskExecutor ())

{

 Executors/ExecutorService IntStream
« Starts a new (virtual) Thread for -range (0, 10_000_000)
each task within a syntax block -forEach (1 -> executor
.submit(() -> {
Thread

.sleep (Duration
.0ofSeconds (1)) ;
return 1i;

D)

See docs.oracle.com/en/java/javase/19/language/preview-language-and-vm-features.html

https://docs.oracle.com/en/java/javase/19/language/preview-language-and-vm-features.html

Programming with Java Structured Concurrency

« Java structured concurrency is evolving

« Executors/ExecutorService

« Added in Java 19 as a “preview
feature”

* Preview features are mostly
finished, but are waiting for
a round of feedback

newThreadPerTaskExecutor

public static ExecutorService newThreadPerTaskExecutor
(ThreadFactory threadFactory)

newThreadPerTaskExecutor is a preview API of the Java
platform.
Programs can only use newThreadPerTaskExecutor when

preview features are enabled.
Preview features may be removed in a future release, or
upgraded to permanent features of the Java platform.

Creates an Executor that starts a new Thread for each task. The
number of threads created by the Executor is unbounded.

Invoking cancel(true) on a Future representing the pending
result of a task submitted to the Executor will interrupt the
thread executing the task.

Parameters:

threadFactory - the factory to use when creating new threads

Returns:

a new executor that creates a new Thread for each task

See docs.oracle.com/en/java/javase/19/language/preview-language-and-vm-features.html

https://docs.oracle.com/en/java/javase/19/language/preview-language-and-vm-features.html

Programming with Java Structured Concurrency

« Java structured concurrency is evolving

« Executors/ExecutorService

 Less publicized as Structured
TaskScope since it's limited

LIMITED

newThreadPerTaskExecutor

public static ExecutorService newThreadPerTaskExecutor
(ThreadFactory threadFactory)

4 N\
newThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or

upgraded to permanent features of the Java platform.
- J

Creates an Executor that starts a new Thread for each task. The
number of threads created by the Executor is unbounded.

Invoking cancel(true) on a Future representing the pending
result of a task submitted to the Executor will interrupt the
thread executing the task.

Parameters:
threadFactory - the factory to use when creating new threads

Returns:

a new executor that creates a new Thread for each task

See upcoming lesson on * Programming with Java ThreadPerTaskExecutor”

End of Programming with
Java Structured Concurrency

19

