
Overview of Java Structured Concurrency

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand Java’s structured

concurrency model
• This model is designed to enable

the processing of "embarrassingly
parallel" tasks atop the virtual
threading mechanisms available
in Java 19 (& beyond)

See www.happycoders.eu/java/structured-concurrency-structuredtaskscope

http://www.happycoders.eu/java/structured-concurrency-structuredtaskscope

3

Overview of Java
Structured Concurrency

4

• Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm

Overview of Java Structured Concurrency

See openjdk.org/jeps/428

https://openjdk.org/jeps/428

5

• Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer

Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Structured_concurrency

https://en.wikipedia.org/wiki/Structured_concurrency

6

• Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer
• “Safer” == avoiding thread

leaks & orphan threads

Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Orphan_process

Thread T2 may become an orphan
& leak relative to Thread T1

https://en.wikipedia.org/wiki/Orphan_process

7

• Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer
• “Safer” == avoiding thread

leaks & orphan threads

Overview of Java Structured Concurrency

The lifetime of Thread T1 & Thread T2
are constrained to the enclosing scope

8

• Java’s structured concurrency paradigm
is designed to mimic structured
programming

Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Structured_programming

https://en.wikipedia.org/wiki/Structured_programming

9See auroratide.com/posts/understanding-kotlin-coroutines

• Java’s structured concurrency paradigm
is designed to mimic structured
programming, i.e.
• Well-defined entry & exit points for

the flow of execution through a
block of code

Overview of Java Structured Concurrency

https://auroratide.com/posts/understanding-kotlin-coroutines

10

• Java’s structured concurrency paradigm
is designed to mimic structured
programming, i.e.
• Well-defined entry & exit points for

the flow of execution through a
block of code

• A strict nesting of the lifetimes of
operations in a way that mirrors
their syntactic nesting in the code

Overview of Java Structured Concurrency

11

• Java structured concurrency is intended for “embarrassingly parallel” programs
Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel

12

Overview of Java Structured Concurrency

Microservice-based App

Clients

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

• Java structured concurrency is intended for “embarrassingly parallel” programs
• e.g., interacting with many micro-services in a cloud computing environment

See en.wikipedia.org/wiki/Microservices

Structured
Concurrency

https://en.wikipedia.org/wiki/Microservices

13

Java Structured
Concurrency Example

14

• Java structured concurrency makes the start & end of concurrent code explicit
Java Structured Concurrency Example

See github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

We will walk through this
example quickly now & will
explore it in detail later on

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

15

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

Define a scope for splitting a task
into concurrent subtasks that all

run complete or first failure

• Java structured concurrency makes the start & end of concurrent code explicit

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

16

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

Start new virtual threads to
reduce & multiply random

BigFraction objects concurrently

• Java structured concurrency makes the start & end of concurrent code explicit

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html#fork

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

17

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

Add a Future to each
computation result

• Java structured concurrency makes the start & end of concurrent code explicit

See docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

18

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

Wait for all threads to finish or
the task scope to shut down

if an exception is thrown

• Java structured concurrency makes the start & end of concurrent code explicit

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join()

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

19

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

Process the results, which are all
stored in completed future objects

• Java structured concurrency makes the start & end of concurrent code explicit

20

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
 var results = new ArrayList<Future<BigFraction>>()

 for (var bigFraction :
 generateRandomBigFractions(count))
 results.add(scope
 .fork(() ->
 reduceAndMultiply(bigFraction,
 sBigReducedFraction));

 scope.join().throwIfFailed();
 ...
 sortAndPrintList(results);
}

Java Structured Concurrency Example

The close() method of `scope’ is called
automatically when the block of code exits

• Java structured concurrency makes the start & end of concurrent code explicit

21

Java Structured
Concurrency Benefits

22

• Java structured concurrency provides
several guarantees

Java Structured Concurrency Benefits

23

T4T2 T3

T1

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

Java Structured Concurrency Benefits

The flow of control splits into multiple
threads at the beginning of the scope

See theboreddev.com/understanding-structured-concurrency

https://theboreddev.com/understanding-structured-concurrency

24

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

Java Structured Concurrency Benefits

T4

Subtasks work on behalf of a task,
i.e., the task awaits the subtasks'

results & monitors them for failures

T2 T3

T1

25

T2

T4T3

All these threads must complete
by the end of the enclosing scope

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

Java Structured Concurrency Benefits

T1

The lifetime of a subtask is confined to the syntactic block of its parent task

26

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

• No “orphaned threads” occur in
an application

Java Structured Concurrency Benefits

T5

T2

T4T3

T1

27

End of Overview of Java
Structured Concurrency

