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Learning Objectives in this Part of the Lesson

« Understand Java’s structured
concurrency model

» This model is designed to enable
the processing of "embarrassingly
parallel" tasks atop the virtual
threading mechanisms available
in Java 19 (& beyond)

See www.happycoders.eu/java/structured-concurrency-structuredtaskscope
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Overview of Java Structured Concurrency

» Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm
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Simplify multithreaded programming by introducing an API for structured
concurrency. Structured concurrency treats multiple tasks running in different
threads as a single unit of work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing observability. This is an

incubating API.

Goals

= Improve the maintainability, reliability, and observability of multithreaded

code.

= Promote a style of concurrent programming which can eliminate common
risks arising from cancellation and shutdown, such as thread leaks and
cancellation delays.

See openjdk.org/ijeps/428
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 Structured concurrency was added Unstructured Structured
fairly recently to very modern Java \i'
as a concurrent programming

paradigm

« It's intended to make programs M\ _1!&
easier to read & understand,
quicker to write, & safer \i'
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See en.wikipedia.org/wiki/Structured concurrency
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« “Safer” == avoiding thread
leaks & orphan threads
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Thread T> may become an orphan
& leak relative to Thread T;

See en.wikipedia.org/wiki/Orphan process
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Structured concurrency was added Unstructured Structured
fairly recently to very modern Java \i'
as a concurrent programming

paradigm \5/ T, | \L\,\

« It's intended to make programs w M M
easier to read & understand,
quicker to write, & safer 1 W
« “Safer” == avoiding thread N \l,

leaks & orphan threads

The lifetime of Thread T; & Thread T,
are constrained to the enclosing scope
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 Java’s structured concurrency paradigm
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See en.wikipedia.org/wiki/Structured programming
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Java’s structured concurrency paradigm
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See auroratide.com/posts/understanding-kotlin-coroutines
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Overview of Java Structured Concurrency

« Java structured concurrency is intended for “embarrassingly paralle

"Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

III

programs

See en.wiki

pedia.org/wiki/Embarrassingly

parallel
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Overview of Java Structured Concurrency

« Java structured concurrency is intended for “embarrassingly parallel” programs
* e.g., interacting with many micro-services in a cloud computing environment

Structured
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See en.wikipedia.org/wiki/Microservices
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Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,

wcedFraction) ) ;
scope.join() .throwIfFailed() ; We will walk through this

. example quickly now & will
sortAndPrintList (results) ; explore it in detail later on

}

See github.com/douglascraigschmidt/LivelLessons/tree/master/Loom/ex3
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Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) ({
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

.join() .throwIfFailed() ; ; o
scope.join() . throwlfFailed() Define a scope for splitting a task

sortAndPrintList (results) ; into concurrent subtasks that all
run complete or first failure

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html



https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))
results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,

\\\\\\\fﬁiiii?ucedFraction));
scope.join() .throwIfFailed() ;

Start new virtual threads to
reduce & multiply random
BigFraction objects concurrently

sortAndPrintList (results) ;

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope.html#fork
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Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :

generateRandomBigFractions (count))
results.add (scope Add a Future to each
.fork (() -> computation result

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

sortAndPrintList (results) ;

See docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add



https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ; Wait for all threads to finish or

the task scope to shut down
If an exception is thrown

sortAndPrintList (results) ;

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope.ShutdownOnFailure.html#join()
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Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

Process the results, which are all

PrintLi 1 A : '
sortAndPrintList (results) stored in completed future objects
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Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

;c;;gtAndprintList (results) ; The close() method of "scope’is called
} automatically when the block of code exits

20



Java Structured
Concurrency Benefits
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Java Structured Concurrency Benefits

 Java structured concurrency provides

several guarantees
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Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

The flow of control splits into multiple
threads at the beginning of the scope

See theboreddev.com/understanding-structured-concurrency



https://theboreddev.com/understanding-structured-concurrency

Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

Subtasks work on behalf of a task,
l.e., the task awaits the subtasks’
results & monitors them for failures

24



Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

All these threads must complete
by the end of the enclosing scope

The lifetime of a subtask is confined to the syntactic block of its parent task




Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

* No “orphaned threads” occur in
an application

26



End of Overview of Java
Structured Concurrency
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