Overview of Java Structured Concurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand Java’s structured
concurrency model

» This model is designed to enable
the processing of "embarrassingly
parallel" tasks atop the virtual
threading mechanisms available
in Java 19 (& beyond)

See www.happycoders.eu/java/structured-concurrency-structuredtaskscope

http://www.happycoders.eu/java/structured-concurrency-structuredtaskscope

Overview of Java
Structured Concurrency

Overview of Java Structured Concurrency

» Structured concurrency was added
fairly recently to very modern Java
as a concurrent programming
paradigm

JEP 428: Structured Concurrency (Incubator)

Authors
Owner
Type

Scope
Status
Release
Component
Discussion
Reviewed by
Created
Updated
Issue

Summary

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Closed /Delivered

19

core-libs

loom dash dev at openjdk dot java dot net
Alex Buckley, Brian Goetz
2021/11/15 15:01
2022/08/10 15:58

8277129

Simplify multithreaded programming by introducing an API for structured
concurrency. Structured concurrency treats multiple tasks running in different
threads as a single unit of work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing observability. This is an

incubating API.

Goals

= Improve the maintainability, reliability, and observability of multithreaded

code.

= Promote a style of concurrent programming which can eliminate common
risks arising from cancellation and shutdown, such as thread leaks and
cancellation delays.

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Overview of Java Structured Concurrency

 Structured concurrency was added Unstructured Structured
fairly recently to very modern Java \i'
as a concurrent programming

paradigm

« It's intended to make programs M\ _1!&
easier to read & understand,
quicker to write, & safer \i'

R
o=

See en.wikipedia.org/wiki/Structured concurrency

https://en.wikipedia.org/wiki/Structured_concurrency

Overview of Java Structured Concurrency

 Structured concurrency was added Unstructured Structured
fairly recently to very modern Java g
as a concurrent programming 4
paradigm \‘/\}

« It's intended to make programs M\‘;’]‘
easier to read & understand,
quicker to write, & safer \i/ §‘/

« “Safer” == avoiding thread
leaks & orphan threads

Q

N4

Thread T> may become an orphan
& leak relative to Thread T;

See en.wikipedia.org/wiki/Orphan process

https://en.wikipedia.org/wiki/Orphan_process

Overview of Java Structured Concurrency

Structured concurrency was added Unstructured Structured
fairly recently to very modern Java \i'
as a concurrent programming

paradigm \5/ T, | \L\,\

« It's intended to make programs w M M
easier to read & understand,
quicker to write, & safer 1 W
« “Safer” == avoiding thread N \l,

leaks & orphan threads

The lifetime of Thread T; & Thread T,
are constrained to the enclosing scope

Overview of Java Structured Concurrency
 Java’s structured concurrency paradigm

. . .. if while function
is designed to mimic structured i
programming /,\ \L \&

aEa = ~
\Tj) J

Unstructured Structured

\
Yo I~
2" o=
[j«/

See en.wikipedia.org/wiki/Structured programming

https://en.wikipedia.org/wiki/Structured_programming

Overview of Java Structured Concurrency
Java’s structured concurrency paradigm

] . o if while function

is designed to mimic structured i

programming, i.e. N i

« Well-defined entry & exit points for ;. &u
the flow of execution through a L
block of code \> L// \

Unstructured Structured

|
L N
m-" am
§ j/

See auroratide.com/posts/understanding-kotlin-coroutines

https://auroratide.com/posts/understanding-kotlin-coroutines

Overview of Java Structured Concurrency
Java’s structured concurrency paradigm

. . .. if while function
is designed to mimic structured i
programming, i.e. N \&
- . >m
A

N/
« A strict nesting of the lifetimes of d
operations in a way that mirrors

. . . . Unstructured Structured
their syntactic nesting in the code b
-1
- _
y -

10

Overview of Java Structured Concurrency

« Java structured concurrency is intended for “embarrassingly paralle

"Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

III

programs

See en.wiki

pedia.org/wiki/Embarrassingly

parallel

http://en.wikipedia.org/wiki/Embarrassingly_parallel

Overview of Java Structured Concurrency

« Java structured concurrency is intended for “embarrassingly parallel” programs
* e.g., interacting with many micro-services in a cloud computing environment

Structured

Concurrency |

Clients

T1g¢

5(5; ‘/(i Arpor] kﬁ]

| S

See en.wikipedia.org/wiki/Microservices

https://en.wikipedia.org/wiki/Microservices

Java Structured
Concurrency Example

13

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,

wcedFraction)) ;
scope.join() .throwIfFailed() ; We will walk through this

. example quickly now & will
sortAndPrintList (results) ; explore it in detail later on

}

See github.com/douglascraigschmidt/LivelLessons/tree/master/Loom/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) ({
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

.join() .throwIfFailed() ; ; o
scope.join() . throwlfFailed() Define a scope for splitting a task

sortAndPrintList (results) ; into concurrent subtasks that all
run complete or first failure

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))
results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,

\\\\\\\fﬁiiii?ucedFraction));
scope.join() .throwIfFailed() ;

Start new virtual threads to
reduce & multiply random
BigFraction objects concurrently

sortAndPrintList (results) ;

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope.html#fork

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :

generateRandomBigFractions (count))
results.add (scope Add a Future to each
.fork (() -> computation result

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

sortAndPrintList (results) ;

See docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ; Wait for all threads to finish or

the task scope to shut down
If an exception is thrown

sortAndPrintList (results) ;

}

See jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope.ShutdownOnFailure.html#join()

https://docs.oracle.com/en/java/javase/19/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

Process the results, which are all

PrintLi 1 A : '
sortAndPrintList (results) stored in completed future objects

19

Java Structured Concurrency Example

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() .throwIfFailed() ;

;c;;gtAndprintList (results) ; The close() method of "scope’is called
} automatically when the block of code exits

20

Java Structured
Concurrency Benefits

21

Java Structured Concurrency Benefits

 Java structured concurrency provides

several guarantees

22

Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

The flow of control splits into multiple
threads at the beginning of the scope

See theboreddev.com/understanding-structured-concurrency

https://theboreddev.com/understanding-structured-concurrency

Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

Subtasks work on behalf of a task,
l.e., the task awaits the subtasks’
results & monitors them for failures

24

Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

« When a program’s flow of control
is split into multiple threads these
threads always complete at the
end of a flow

All these threads must complete
by the end of the enclosing scope

The lifetime of a subtask is confined to the syntactic block of its parent task

Java Structured Concurrency Benefits

 Java structured concurrency provides
several guarantees

* No “orphaned threads” occur in
an application

26

End of Overview of Java
Structured Concurrency

27

