
Java Platform Threads
vs. Virtual Threads (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving

code to a thread
• Learn how to pass parameters

to a Java thread
• Know the differences between Java

platform & virtual threads
• Be aware of how to create Java

platform & virtual threads

Learning Objectives in this Part of the Lesson

3

• Understand how Java threads support concurrency
• Learn how our case study app works
• Know alternative ways of giving

code to a thread
• Learn how to pass parameters

to a Java thread
• Know the differences between Java

platform & virtual threads
• Be aware of how to create Java

platform & virtual threads
• Recognize virtual Thread

best practices

Learning Objectives in this Part of the Lesson

4

Creating Java Platform
Threads vs. Virtual Threads

5

• Java platform threads can be
created in two different ways

Creating Java Platform Threads vs. Virtual Threads

6

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

Create & start a thread using
GCDThread, which is a

named subclass of Thread

7

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

public class GCDRunnable
implements Runnable {

public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

new Thread(gcdRunnable).start();

Pass runnable to a new
Thread object & start it

See en.wikipedia.org/wiki/Thread_(computing)#User_threads

https://en.wikipedia.org/wiki/Thread_(computing)

8

• Java platform threads can be
created in two different ways
• The traditional way

Creating Java Platform Threads vs. Virtual Threads
public class GCDThread

extends Thread {
public void run() {

// code to run goes here
}

}

Thread gcdThread = new GCDThread();
gcdThread.start();

public class GCDRunnable
implements Runnable {

public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

new Thread(gcdRunnable).start();

Java threads are relatively “heavyweight”

9

• Java platform threads can be
created in two different ways
• The traditional way
• The Java 19 way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

new Thread(gcdRunnable).start();

By default, a traditional Java Thread is a platform thread!

A familiar way to create & start a Java
platform thread so it executes gcdRunnable

10

• Java platform threads can be
created in two different ways
• The traditional way
• The Java 19 way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread.ofPlatform()
.start(gcdRunnable);

See docs.oracle.com/en/java/javase/19/docs/
api/java.base/java/lang/Thread.html#ofPlatform()

A more flexible way to create & start a
platform thread so it executes gcdRunnable

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

11

• Java platform threads can be
created in two different ways
• The traditional way
• The Java 19 way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofPlatform()
.unstarted(gcdRunnable);

...
thread.start();

Create an “unstarted” platform thread &
then start it so it executes gcdRunnable

12

• Java platform threads can be
created in two different ways
• The traditional way
• The Java 19 way

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofPlatform()
.unstarted(gcdRunnable);

...
thread.start();

Java platform threads are also relatively “heavyweight”

13

• Java virtual threads can also
be created in Java 19

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread.startVirtualThread
(gcdRunnable);

See docs.oracle.com/en/java/javase/19/docs/api/
java.base/java/lang/Thread.html#startVirtualThread

A concise way to create & start a Java
virtual thread so it executes gcdRunnable

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

14

• Java virtual threads can also
be created in Java 19

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread.ofVirtual()
.start(gcdRunnable);

See docs.oracle.com/en/java/javase/19/docs/
api/java.base/java/lang/Thread.html#ofVirtual()

A more flexible way to create & start a
virtual thread so it executes gcdRunnable

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

15

• Java virtual threads can also
be created in Java 19

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofVirtual()
.unstarted(gcdRunnable);

...
thread.start();

Create an “unstarted” virtual thread &
then start it so it executes gcdRunnable

16

• Java virtual threads can also
be created in Java 19

Creating Java Platform Threads vs. Virtual Threads
public class GCDRunnable

implements Runnable {
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable();

Thread thread = Thread
.ofVirtual()
.unstarted(gcdRunnable);

...
thread.start();

Java virtual threads are relatively “lightweight”

17

Virtual Thread
Best Practices

18

• Follow certain “best practices”
when using Java virtual threads

Virtual Thread Best Practices

See howtodoinjava.com/java/multi-threading/
virtual-threads/#5-best-practices

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

19

• Follow certain “best practices”
when using Java virtual threads
• Do not pool virtual threads!
• Creating virtual threads is

inexpensive, so there is never
a need to pool them

Virtual Thread Best Practices

See howtodoinjava.com/java/multi-threading/virtual-
threads/#51-do-not-pool-the-virtual-threads

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

20

• Follow certain “best practices”
when using Java virtual threads
• Do not pool virtual threads!
• Avoid using thread-local

variables
• If an app uses ThreadLocal

& creates 1 million virtual
threads then 1 million Thread
Local instances are created!

Virtual Thread Best Practices

See howtodoinjava.com/java/multi-threading/virtual-
threads/#52-avoid-using-thread-local-variables

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

21

• Follow certain “best practices”
when using Java virtual threads
• Do not pool virtual threads!
• Avoid using thread-local

variables
• Use ReentrantLock instead

of synchronized blocks
• Synchronized blocks “pin” a

virtual thread to a platform
thread..

Virtual Thread Best Practices

See howtodoinjava.com/java/multi-threading/virtual-threads/
#53-use-reentrantlock-instead-of-synchronized-blocks

public synchronized void m() {
try {
// ... access resource

} finally {
//

}
}
...

private final ReentrantLock lock
= new ReentrantLock();

public void m() {
lock.lock();
try {
// ... access resource

} finally {
lock.unlock();

}
}

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

22

End of Java Platform
Threads vs. Virtual Threads

(Part 2)

