Java Platiorm Threads
vs. Virtual Threads (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the differences between Java
platform & virtual threads

« Be aware of how to create Java
platform & virtual threads

Learning Objectives in this Part of the Lesson

« Know the differences between Java

platform & virtual threads

» Recognize virtual Thread
best practices

Creating Java Platform
Threads vs. Virtual Threads

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be
created in two different ways

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be public class GCDThread
created in two different ways extends Thread {

. public void run() {
* The traditional way // code to run goes here

}

}

Thread gcdThread = new GCDThread() ;
(gcdThread.start() ;

Create & start a thread using
GCDThread, which is a
named subclass of Thread

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be
created in two different ways

* The traditional way

Pass runnable to a new
Thread object & start it

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable
new GCDRunnable () ;
new Thread (gcdRunnable) .start() ;

See en.wikipedia.org/wiki/Thread (computing)#User threads

https://en.wikipedia.org/wiki/Thread_(computing)

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be
created in two different ways

* The traditional way

public class GCDThread
extends Thread {

public void run() {
// code to run goes here

}
}

Thread gcdThread = new GCDThread() ;
gcdThread.start() ;

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable
new GCDRunnable () ;
new Thread (gcdRunnable) .start() ;

Java threads are relatively “heavyweight”

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run() {

// code to run goes here
* The Java 19 way }
}

Runnable gcdRunnable =
new GCDRunnable () ;

new Thread (gcdRunnable) .start() ;

/

A familiar way to create & start a Java
platform thread so it executes gcadRunnable

Proyjeat Leom

By default, a traditional Java Thread /s a platform thread!

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be public class GCDRunnable

created in two different ways implements Runnable {
public void run() {

// code to run goes here
* The Java 19 way }
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.ofPlatform()
////.start(gcdRunnable);

A more flexible way to create & start a
platform thread so it executes gcadRunnable

Proyjeat Leom

See docs.oracle.com/en/java/javase/19/docs/
api/java.base/java/lang/Thread.html#ofPlatform

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be
created in two different ways

* The Java 19 way

Proyjeat Leom

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
.0ofPlatform()

.unstarted (gcdRunnable) ;

thread.start() ; \\\

Create an "unstarted” platform thread &
then start it so it executes gcdRunnable

11

Creating Java Platform Threads vs. Virtual Threads

 Java platform threads can be
created in two different ways

* The Java 19 way

public class GCDRunnable
implements Runnable ({

public void run() {
// code to run goes here
}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
.ofPlatform()
.unstarted (gcdRunnable) ;

thread.start () ;

Java platform threads are also relatively “heavyweight”

Creating Java Platform Threads vs. Virtual Threads

 Java virtual threads can also public class GCDRunnable

be created in Java 19 implements Runnable {
public void run() {

// code to run goes here
}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.startVirtualThread

// (gcdRunnable) ;

A concise way to create & start a Java
virtual thread so it executes gcadRunnable

See docs.oracle.com/en/java/javase/19/docs/api/
java.base/java/lang/Thread.html#startVirtualThread

Proyjeat Leom

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

Creating Java Platform Threads vs. Virtual Threads

e Java virtual threads can also
be created in Java 19

Proyjeat Leom

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here
}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread.ofVirtual ()
.start (gcdRunnable) ;

/

A more flexible way to create & start a
virtual thread so it executes gcadRunnable

See docs.oracle.com/en/java/javase/19/docs/
api/java.base/java/lang/Thread.html#ofVirtual

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

Creating Java Platform Threads vs. Virtual Threads

e Java virtual threads can also
be created in Java 19

Proyjeat Leom

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
.0fVirtual ()

.unstarted (gcdRunnable) ;

thread.start() ; \\\

Create an "unstarted” virtual thread &
then start it so it executes gcdRunnable

15

Creating Java Platform Threads vs. Virtual Threads

e Java virtual threads can also
be created in Java 19

public class GCDRunnable
implements Runnable ({
public void run() {
// code to run goes here

}
}

Runnable gcdRunnable =
new GCDRunnable () ;

Thread thread = Thread
.0fVirtual ()
.unstarted (gcdRunnable) ;

thread.start () ;

Java virtual threads are relatively “lightweight”

Virtual Thread
Best Practices

17

Virtual Thread Best Practices

* Follow certain “best practices”
when using Java virtual threads

See howtodoinjava.com/java/multi-threading/
virtual-threads/#5-best-practices

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

 Follow certain “best practices”
when using Java virtual threads

* Do not pool virtual threads!

» Creating virtual threads is
inexpensive, so there is never
a need to pool them

See howtodoinjava.com/java/multi-threading/virtual-
threads/#51-do-not-pool-the-virtual-threads

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

* Follow certain “best practices”
when using Java virtual threads

 Avoid using thread-local Ihread
variables

 If an app uses ThreadlLocal
& creates 1 million virtual
threads then 1 million Thread
Local instances are created!

See howtodoinjava.com/java/multi-threading/virtual-
threads/#52-avoid-using-thread-local-variables

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

Virtual Thread Best Practices

* Follow certain “best practices”
when using Java virtual threads

e Use ReentrantLock instead
of synchronized blocks

* Synchronized blocks “pin” a
virtual thread to a platform
thread..

public synchronized void m() {

try
// ... access resource
} finally {
//
}

}
private final ReentrantLock lock
= new ReentrantLock() ;

public void m() {
lock.lock () ;

try
// ... access resource
} finally {

lock.unlock () ;

}
}

See howtodoinjava.com/java/multi-threading/virtual-threads/

#53-use-reentrantlock-instead-of-synchronized-blocks

https://howtodoinjava.com/java/multi-threading/virtual-threads/
https://howtodoinjava.com/java/multi-threading/virtual-threads/

End of Java Platform

Threads vs. Virtual Threads
(Part 2)

22

