
Java Platform Threads 
vs. Virtual Threads (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Know the differences between Java
platform & virtual threads

Learning Objectives in this Part of the Lesson

See docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html


3

Java Platform Threads 
vs. Virtual Threads



4

• A Java Thread has traditionally been an object
containing various methods & fields that 
constitute its “state”

Java Platform Threads vs. Virtual Threads

See blog.jamesdbloom.com/JVMInternals.html

e.g., each Java Thread has its own unique name, 
identifier, priority, runtime stack, thread-local 

storage, instruction pointer, & other registers, etc.

http://blog.jamesdbloom.com/JVMInternals.html


5

• A Java Thread has traditionally been an object
containing various methods & fields that 
constitute its “state”
• Java 19 now refers to these types

of Java threads as “platform threads” 

Java Platform Threads vs. Virtual Threads

See wiki.openjdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main


6

• Each Java platform thread is associated 1-to-1 
with an OS kernel thread 

Java Platform Threads vs. Virtual Threads

See en.wikipedia.org/wiki/Thread_(computing)#Kernel_threads

https://en.wikipedia.org/wiki/Thread_(computing)


7

• Each Java platform thread is associated 1-to-1 
with an OS kernel thread 
• It contains the same unique “state” as a

traditional Java Thread object

Java Platform Threads vs. Virtual Threads



8

• Each Java platform thread is associated 1-to-1 
with an OS kernel thread 
• It contains the same unique “state” as a

traditional Java Thread object
• Platforms threads are suitable for executing 

all types of tasks

Java Platform Threads vs. Virtual Threads



9

• Each Java platform thread is associated 1-to-1 
with an OS kernel thread 
• It contains the same unique “state” as a

traditional Java Thread object
• Platforms threads are suitable for executing 

all types of tasks
• However, they are a limited resource due

to their non-trivial runtime stack size

Java Platform Threads vs. Virtual Threads



10

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
Java Platform Threads vs. Virtual Threads

Virtual
Thread

Platform
Thread

See www.infoq.com/articles/java-virtual-threads

http://www.infoq.com/articles/java-virtual-threads


11

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread

Java Platform Threads vs. Virtual Threads

See en.wikipedia.org/wiki/Thread_(computing)#User_threads

Virtual
Threads

User threads

https://en.wikipedia.org/wiki/Thread_(computing)


12

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• It is scheduled by the Java 

execution environment rather 
than the underlying OS

Java Platform Threads vs. Virtual Threads

Virtual
Threads



13See www.youtube.com/watch?v=Ul50FFmOzU4

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• It is scheduled by the Java 

execution environment rather 
than the underlying OS

• A very large # of virtual threads
can therefore be created

Java Platform Threads vs. Virtual Threads

Virtual
Threads

https://www.youtube.com/watch?v=Ul50FFmOzU4


14

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• Virtual threads are multiplexed atop a pool of “carrier” threads

Java Platform Threads vs. Virtual Threads

See www.happycoders.eu/java/virtual-threads

Blocking operations no longer block the executing thread, which enables the 
processing of a large # of requests in parallel with a small pool of carrier threads

http://www.happycoders.eu/java/virtual-threads


15

• In contrast, each Java virtual thread is a “lightweight” concurrency object 
• It is a user thread rather than a kernel thread
• Virtual threads are multiplexed atop a pool of “carrier” threads
• The Java fork-join framework is

currently used to implement
the “carrier” threads

Java Platform Threads vs. Virtual Threads

See theboreddev.com/understanding-java-virtual-threads

Virtual
Threads

https://theboreddev.com/understanding-java-virtual-threads


16

End of Java Platform 
Threads vs. Virtual Threads

(Part 1)


