Java Platiorm Threads
vs. Virtual Threads (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the differences between Java
platform & virtual threads Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to
kernel threads scheduled by the operating system. Platform threads will usually have
a large stack and other resources that are maintained by the operating system.
Platforms threads are suitable for executing all types of tasks but may be a limited
resource.

Platform threads are designated daemon or non-daemon threads. When the Java
virtual machine starts up, there is usually one non-daemon thread (the thread that
typically calls the application's main method). The Java virtual machine terminates
when all started non-daemon threads have terminated. Unstarted daemon threads do
not prevent the Java virtual machine from terminating. The Java virtual machine can
also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are
members of a thread group.

Platform threads get an automatically generated thread name by default.
Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically
user-mode threads scheduled by the Java virtual machine rather than the operating
system. Virtual threads will typically require few resources and a single Java virtual
machine may support millions of virtual threads. Virtual threads are suitable for
executing tasks that spend most of the time blocked, often waiting for I/O operations
to complete. Virtual threads are not intended for long running CPU intensive
operations.

Virtual threads typically employ a small set of platform threads used as carrier
threads. Locking and I/O operations are the scheduling points where a carrier thread
is re-scheduled from one virtual thread to another. Code executing in a virtual thread
will usually not be aware of the underlying carrier thread, and in particular, the
currentThread() method, to obtain a reference to the current thread, will return the

@@@j@@@ E,@@m Thread object for the virtual thread, not the underlying carrier thread.

Virtual threads gets a fixed name by default.

See docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html

Java Platform Threads
vs. Virtual Threads

Java Platform Threads vs. Virtual Threads

* A Java Thread has traditionally been an object [Thread

containing various methods & fields that -
. o " rogram Counter
constitute its “state
Stack Native Stack
\ /
| /
| /

e.g., each Java Thread has its own unigue name,
/dentifier, priority, runtime stack, thread-local
storage, instruction pointer, & other registers, etc.

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

Java Platform Threads vs. Virtual Threads

* A Java Thread has traditionally been an obje
containing various methods & fields that
constitute its “state”

 Java 19 now refers to these types
of Java threads as “platform threads”

1Pwer@CE ILeOm

See wiki.openijdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

Java Platform Threads vs. Virtual Threads

e Each Java platform thread is associated 1-to-1
with an OS kernel thread

See en.wikipedia.org/wiki/Thread (computing)#Kernel threads

https://en.wikipedia.org/wiki/Thread_(computing)

Java Platform Threads vs. Virtual Threads

e Each Java platform thread is associated 1-to-1
with an OS kernel thread

It contains the same unique “state” as a
traditional Java Thread object

Java Platform Threads vs. Virtual Threads

e Each Java platform thread is associated 1-to-1
with an OS kernel thread

 Platforms threads are suitable for executing
all types of tasks

Java Platform Threads vs. Virtual Threads

e Each Java platform thread is associated 1-to-1
with an OS kernel thread

 Platforms threads are suitable for executing
all types of tasks

* However, they are a limited resource due
to their non-trivial runtime stack size

el TTITED

Java Platform Threads vs. Virtual Threads

 In contrast, each Java virtual thread is a “lightweight” concurrency object

Virtual
Thread

Platform
Thread

See www.infog.com/articles/java-virtual-threads

http://www.infoq.com/articles/java-virtual-threads

Java Platform Threads vs. Virtual Threads

e In contrast, each Java virtual thread is a “lightweight” concurrency object
e It is a user thread rather than a kernel thread

Virtual
Threads

£ %

x

User threads

See en.wikipedia.org/wiki/Thread (computing)#User threads

https://en.wikipedia.org/wiki/Thread_(computing)

Java Platform Threads vs. Virtual Threads

e In contrast, each Java virtual thread is a “lightweight” concurrency object
e It is a user thread rather than a kernel thread

* It is scheduled by the Java Virtual
execution environment rather Threads
than the underlying OS 5 5

€
¢ [——
¢ ———)
e
e

12

Java Platform Threads vs. Virtual Threads

 In contrast, each Java virtual thread is a “lightweight” concurrency object
It is a user thread rather than a kernel thread

. Virtual
. € % Thlregffs £ = £
% < % s
e _FF s %
+ Avery large # of virtual threads % ¥ c L F
can therefore be created 5 s t s P

ONEJBILLION

See www.youtube.com/watch?v=UI5S0FFmOzU4

https://www.youtube.com/watch?v=Ul50FFmOzU4

Java Platform Threads vs. Virtual Threads

e In contrast, each Java virtual thread is a “lightweight” concurrency object

* Virtual threads are multiplexed atop a pool of “carrier” threads

Carrier thread:

R R R R Runnable R R R

[vr2 VT 1 VT 3 VT 2 VT 1 VT 2 VT 3 VT 1

Virtual thread 1:

R Waiting Runnable Waiting Blocked R
Virtual thread 2:
R Blocked Waiting R Waiting R
Virtual thread 3:
R Waiting R

Blocking operations no longer block the executing thread, which enables the
processing of a large # of requests in parallel with a small pool of carrier threads

See www.happycoders.eu/java/virtual-threads

http://www.happycoders.eu/java/virtual-threads

Java Platform Threads vs. Virtual Threads

e In contrast, each Java virtual thread is a “lightweight” concurrency object

* Virtual threads are multiplexed atop a pool of “carrier” threads
e The Java fork-join framework is

currently used to implement 5 % virtual 5 €
the “carrier” threads : % 5 L S <
5 % g 5 F 57
-< % 5 % =5 K
< s %

\\\\
‘\‘ MPRE -
.

v\
- P00! of fork-join worker th*®

See theboreddev.com/understanding-java-virtual-threads

https://theboreddev.com/understanding-java-virtual-threads

End of Java Platform

Threads vs. Virtual Threads
(Part 1)

16

