
Comparing & Contrasting
Spring WebMVC & WebFlux

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Recognize the similarities &

differences between Spring
WebMVC & WebFlux frame-
works supported by Spring 
Boot 2.0



3

Comparing & Contrasting
Spring WebMVC & WebFlux



4

Comparing & Contrasting Spring WebMVC & WebFlux
• Spring WebMVC & WebFlux have similarities & differences wrt functionality &

internal components

See maddy4java.blogspot.com/2019/11/spring-boot-spring-webflux-vs-spring-mvc.html

http://maddy4java.blogspot.com/2019/11/spring-boot-spring-webflux-vs-spring-mvc.html


5

Comparing & Contrasting Spring WebMVC & WebFlux
• WebMVC is sync

Built on Servlet API & uses a sync I/O w/one-thread-per-request model (by default)



6

Comparing & Contrasting Spring WebMVC & WebFlux
• WebMVC is sync
• The server uses a thread-per-request, where each thread handles a single 

request at a time

See www.baeldung.com/spring-webflux-concurrency

http://www.baeldung.com/spring-webflux-concurrency


7

Comparing & Contrasting Spring WebMVC & WebFlux
• WebFlux is async

Non-blocking I/O that leverages multiple cores & handles large # of connections

Callbacks are transparent to server code 
that uses Mono & Flux reactive types



8

Comparing & Contrasting Spring WebMVC & WebFlux
• WebFlux is async
• It uses a completely non-blocking environment that can achieve higher 

concurrency with better resource utilization

See www.baeldung.com/spring-webflux-concurrency

http://www.baeldung.com/spring-webflux-concurrency


9

Accessing Mono & Flux 
Endpoints Seamlessly



10

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html


11

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

Airport[] airports = restTemplate
.getForEntity(baseUrl + AIRPORT + "/" + AIRPORTS,

Airport[].class)
.getBody();

Flux<Airport> airports = webClient
.get()
.uri(baseUrl + AIRPORT 

+ "/" + AIRPORTS)
.retrieve()
.bodyToFlux(Airport.class);

See www.baeldung.com/spring-webclient-resttemplate

http://www.baeldung.com/spring-webclient-resttemplate


12

Use auto-wired fields here!

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

Flux<Airport> airports = webClient
.get()
.uri(baseUrl + AIRPORT 

+ "/" + AIRPORTS)
.retrieve()
.bodyToFlux(Airport.class);

Airport[] airports = restTemplate
.getForEntity(baseUrl + AIRPORT + "/" + AIRPORTS,

Airport[].class)
.getBody();

See flights-microservices/-/blob/master/src/main/java/server/flight/FlightService.java

https://gitlab.com/Creasor/flights-microservices/-/blob/master/src/main/java/server/flight/FlightService.java


13

RestTemplate treats reactive 
types synchronously from 
the perspective of a client

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

Airport[] airports = restTemplate
.getForEntity(baseUrl + AIRPORT + "/" + AIRPORTS,

Airport[].class)
.getBody();

However, no changes are required on the (reactive) server side



14

Easy to convert back 
to reactive types

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

Airport[] airports = restTemplate
.getForEntity(baseUrl + AIRPORT + "/" + AIRPORTS,

Airport[].class)
.getBody();

Flux<Airports> Flux.fromIterable
(airports != null ? List.of(airports): Collections.emptyList());



15

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

WebClient leverages reactive types 
more effectively since responses are 
emitted as soon as they are available 

Flux<Airport> airports = webClient
.get()
.uri(baseUrl + AIRPORT 

+ "/" + AIRPORTS)
.retrieve()
.bodyToFlux(Airport.class);

See www.baeldung.com/spring-webflux-concurrency

http://www.baeldung.com/spring-webflux-concurrency


16

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

An HTTP request is not sent until subscribe() is called (& runs in thread pool)

Mono/

Flux

Mono/

Flux

Mono/

Flux

WebClient also enables end-to-end asynchrony

Flux<Airport> airports = webClient
.get()
.uri(baseUrl + AIRPORT 

+ "/" + AIRPORTS)
.retrieve()
.bodyToFlux(Airport.class);



17

Accessing Mono & Flux Endpoints Seamlessly
• WebFlux Mono/Flux endpoints 

exchange HTTP requests/responses
• WebClient or RestTemplate can 

send/receive HTTP requests/
responses to/from reactive endpoints

• HTTP interface can also be used in
Spring 6 & beyond in lieu of Web
Client or RestTemplate

Flux<Airport> mAsyncAirports =
mAsyncAirportAPI.getAirports();

List<Airport> mSyncAirports =
mSyncAirportAPI.getAirports();

See www.baeldung.com/spring-6-http-interface

http://www.baeldung.com/spring-6-http-interface


18

GET flighthost:8081/airports

[
{
"airportCode": "ALB",
"airportName": "Albany, NY"

},
{
"airportCode": "AMA",
"airportName": "Amarillo, TX"

},
{

"airportCode": "ATL",
"airportName": "Atlanta, GA"

}, ...

Accessing Mono & Flux Endpoints Seamlessly
• JSon encoding/decoding is similar 

for reactive WebFlux Mono/Flux 
types or traditional WebMVC Ref
Types/List types



19

Accessing Mono & Flux Endpoints Seamlessly
• JSon encoding/decoding is similar 

for reactive WebFlux Mono/Flux 
types or traditional WebMVC Ref
Types/List types
• Tools like Postman can work 

seamlessly with either 

See www.postman.com

http://www.postman.com/


20

End of Comparing & 
Contrasting Spring 

WebMVC & WebFlux


