
Overview of Spring WebFlux

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebFlux framework supported
by Spring Boot 2.0

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

3

Overview of
Spring WebFlux

4

Overview of Spring WebFlux

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux

• Spring WebFlux

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

5

Overview of Spring WebFlux

See en.wikipedia.org/wiki/Non-blocking_algorithm

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

https://en.wikipedia.org/wiki/Non-blocking_algorithm

6

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner

CLIENT SERVER

A request to a list of flights from a
database over the network might take a
few seconds, but the threads servicing

requests & responses don’t block

findFlights1

findFlights2

findFlights3

return Flux1

return Flux2

return Flux3

findFlights1

findFlights2

findFlights3

return Flux1

return Flux2

return Flux3

See en.wikipedia.org/wiki/Asynchrony_(computer_programming)

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

7

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner
• A small # of threads are thus required

Overview of Spring WebFlux

See www.baeldung.com/spring-webflux-concurrency

http://www.baeldung.com/spring-webflux-concurrency

8

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner
• A small # of threads are thus required
• Typically based on # of processor cores

Overview of Spring WebFlux

9

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner
• A small # of threads are thus required
• Typically based on # of processor cores
• I/O-bound operations may require

adaptively increasing the # of threads

Overview of Spring WebFlux

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic--

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

10

Overview of Spring WebFlux

See www.baeldung.com/spring-webflux-backpressure

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner
• A small # of threads are thus required
• However, there’s often a need for non-

blocking backpressure
• i.e., control event rate so a fast publisher

does not overwhelm a slower subscriber

http://www.baeldung.com/spring-webflux-backpressure

11

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections
• Requests are handled in an entirely

asynchronous (& “lazy”) manner
• A small # of threads are thus required
• However, there’s often a need for non-

blocking backpressure
• Java 19’s “virtual threads” provide scalability

without non-blocking clients & servers

See fabiangotzen.net/2023/01/19/java-project-loom

https://fabiangotzen.net/2023/01/19/java-project-loom

12See spring.io/blog/2016/04/19/understanding-reactive-types

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

https://spring.io/blog/2016/04/19/understanding-reactive-types

13

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types
• Work on data sequences of 0..1

(Mono) and 0..N (Flux)

public class FlightController {
...
@GetMapping(FLIGHT_DATES)
Flux<LocalDate>

findDepartureDates
(@RequestParam String
departureAirport,
@RequestParam String
arrivalAirport) {...}

...
@GetMapping(EXCHANGE)
Mono<ExchangeRate> getRate
(@RequestParam String from,
@RequestParam String to)
{...}

See flights-reactive-microservices/-/blob/master/src/main/java/server/flight/FlightController.java

https://gitlab.com/Creasor/flights-reactive-microservices/-/blob/master/src/main/java/server/flight/FlightController.java

14

Overview of Spring WebFlux

See reactivex.io/documentation/operators.html

• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types
• Work on data sequences of 0..1

(Mono) and 0..N (Flux)
• Provides a rich set of operators

aligned with the ReactiveX
vocabulary of operators

http://reactivex.io/documentation/operators.html

15

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element

See processing-streaming-data-with-spring-webflux-ed0fc68a14de

mailto:medium.com/@nithinmallya4/processing-streaming-data-with-spring-webflux-ed0fc68a14de

16

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element
• Clients can thus be more responsive

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

17

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element
• Clients can thus be more responsive
• Android retrofit doesn’t support WebFlux reactive clients..

18

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element
• Clients can thus be more responsive
• Android retrofit doesn’t support WebFlux reactive clients..
• Spring 6 HTTP interface also doesn’t work on Android

19

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element
• Clients can thus be more responsive
• The stream can be kept “live” via Spring server-sent-events

public class FlightController {
...
@GetMapping(RATES,
produces = MediaType.
TEXT_EVENT_STREAM_VALUE) {

Flux<ExchangeRate>
getRates(@RequestParam

String toCurrency)
{...}

...

See www.baeldung.com/spring-server-sent-events

http://www.baeldung.com/spring-server-sent-events

20

Overview of Spring WebFlux
• Spring WebFlux
• A non-blocking web framework

that leverages multiple cores &
handles large # of concurrent
connections

• Network communication uses
Project Reactor reactive types

• Reactive Flux types can be
streamed element-by-element
• Clients can thus be more responsive
• The stream can be kept “live” via Spring server-sent-events

The reactive stack can have better response time & the # of request per second

See springboot-2-performance-servlet-stack-vs-webflux-reactive-stack-528ad5e9dadc

mailto:medium.com/@the.raj.saxena/springboot-2-performance-servlet-stack-vs-webflux-reactive-stack-528ad5e9dadc

21

End of Overview of
Spring WebFlux

