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Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported 
by Spring Boot 2.0

See docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html

https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
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Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported 
by Spring Boot 2.0, e.g.
• Its concurrency model
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Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported 
by Spring Boot 2.0, e.g.
• Its concurrency model
• Its communication model



5

Overview of Spring 
WebMVC Concurrency
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Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
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Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request
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A request to a list of flights from a 

database over the network might take a 
few seconds, which blocks threads from 

servicing other requests & responses

See en.wikipedia.org/wiki/Blocking_(computing)

https://en.wikipedia.org/wiki/Blocking_(computing)
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Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request
• Blocking calls are a natural 

form of back pressure
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See medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7

mailto:medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
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Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request
• Blocking calls are a natural 

form of back pressure 
• Forces the caller to wait

CLIENT SERVER
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See en.wikipedia.org/wiki/Rate_limiting

https://en.wikipedia.org/wiki/Rate_limiting
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Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request
• Blocking calls are a natural 

form of back pressure 
• Forces the caller to wait
• Eliminates the need for end-

to-end rate control

CLIENT SERVER
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See en.wikipedia.org/wiki/Rate_limiting

https://en.wikipedia.org/wiki/Rate_limiting
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Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request

• However, a server may need many 
threads to handle bursty clients

See www.baeldung.com/java-web-thread-pool-config

http://www.baeldung.com/java-web-thread-pool-config
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Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request

• However, a server may need many 
threads to handle bursty clients
• Traditional Java Thread objects

consume non-trivial system
resources..
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Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture 
w/one-thread-per-request model
• Each request is handled by a 

thread that blocks until it is able 
to fully process the request

• However, a server may need many 
threads to handle bursty clients

• Java 19’s “virtual threads” provide
much more scalability

See www.happycoders.eu/java/virtual-threads

https://www.happycoders.eu/java/virtual-threads
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Overview of Spring 
WebMVC Communications
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Overview of Spring WebMVC Communication

See docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

• Spring WebMVC communications
• Network communication uses

common Java types

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
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Overview of Spring WebMVC Communication

See flights-microservices/-/blob/master/src/main/java/server/flight/FlightController.java

• Spring WebMVC communications
• Network communication uses

common Java types
• e.g., Java String & Integer objects, 

as well as List & Map collections

public class FlightController {
...
@GetMapping(AIRPORTS)
List<Airport> getAirports() {    
return flightService
.getAirports();

}       
...

}

https://gitlab.com/Creasor/flights-microservices/-/blob/master/src/main/java/server/flight/FlightController.java
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Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send & 

return Java collections in one 
fell swoop Response List of Airports

Request Airports
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Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send & 

return Java collections in one 
fell swoop
• Client latency may suffer & thus

not be as responsive as possible

Response List of Airports

Request Airports

See en.wikipedia.org/wiki/Spinning_pinwheel

https://en.wikipedia.org/wiki/Spinning_pinwheel
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Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send & 

return Java collections in one 
fell swoop
• Client latency may suffer & thus

not be as responsive as possible
• Memory is needed to buffer this 

data at multiple points

Response List of Airports

Request Airports

See english.stackexchange.com/questions/337497/what-is-meant-by-memory-hog

https://english.stackexchange.com/questions/337497/what-is-meant-by-memory-hog


20

Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send & 

return Java collections in one 
fell swoop
• Client latency may suffer & thus

not be as responsive as possible
• Memory is needed to buffer this 

data at multiple points
• Addressed by Spring WebFlux

& reactive programming

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html
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End of Overview of 
Spring WebMVC


