
Overview of Spring WebMVC

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported
by Spring Boot 2.0

See docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html

https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html

3

Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported
by Spring Boot 2.0, e.g.
• Its concurrency model

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

4

Learning Objectives in this Lesson
• Understand the structure &

functionality of the Spring
WebMVC framework supported
by Spring Boot 2.0, e.g.
• Its concurrency model
• Its communication model

5

Overview of Spring
WebMVC Concurrency

6

Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model

7

Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3
A request to a list of flights from a

database over the network might take a
few seconds, which blocks threads from

servicing other requests & responses

See en.wikipedia.org/wiki/Blocking_(computing)

https://en.wikipedia.org/wiki/Blocking_(computing)

8

Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request
• Blocking calls are a natural

form of back pressure

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

See medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7

mailto:medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7

9

Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request
• Blocking calls are a natural

form of back pressure
• Forces the caller to wait

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

See en.wikipedia.org/wiki/Rate_limiting

https://en.wikipedia.org/wiki/Rate_limiting

10

Overview of Spring WebMVC Concurrency
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request
• Blocking calls are a natural

form of back pressure
• Forces the caller to wait
• Eliminates the need for end-

to-end rate control

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

See en.wikipedia.org/wiki/Rate_limiting

https://en.wikipedia.org/wiki/Rate_limiting

11

Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request

• However, a server may need many
threads to handle bursty clients

See www.baeldung.com/java-web-thread-pool-config

http://www.baeldung.com/java-web-thread-pool-config

12

Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request

• However, a server may need many
threads to handle bursty clients
• Traditional Java Thread objects

consume non-trivial system
resources..

13

Overview of Spring WebMVC Communication
• Spring WebMVC concurrency
• Built on the Servlet API & uses

a synchronous I/O architecture
w/one-thread-per-request model
• Each request is handled by a

thread that blocks until it is able
to fully process the request

• However, a server may need many
threads to handle bursty clients

• Java 19’s “virtual threads” provide
much more scalability

See www.happycoders.eu/java/virtual-threads

https://www.happycoders.eu/java/virtual-threads

14

Overview of Spring
WebMVC Communications

15

Overview of Spring WebMVC Communication

See docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

• Spring WebMVC communications
• Network communication uses

common Java types

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

16

Overview of Spring WebMVC Communication

See flights-microservices/-/blob/master/src/main/java/server/flight/FlightController.java

• Spring WebMVC communications
• Network communication uses

common Java types
• e.g., Java String & Integer objects,

as well as List & Map collections

public class FlightController {
...
@GetMapping(AIRPORTS)
List<Airport> getAirports() {
return flightService
.getAirports();

}
...

}

https://gitlab.com/Creasor/flights-microservices/-/blob/master/src/main/java/server/flight/FlightController.java

17

Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send &

return Java collections in one
fell swoop Response List of Airports

Request Airports

18

Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send &

return Java collections in one
fell swoop
• Client latency may suffer & thus

not be as responsive as possible

Response List of Airports

Request Airports

See en.wikipedia.org/wiki/Spinning_pinwheel

https://en.wikipedia.org/wiki/Spinning_pinwheel

19

Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send &

return Java collections in one
fell swoop
• Client latency may suffer & thus

not be as responsive as possible
• Memory is needed to buffer this

data at multiple points

Response List of Airports

Request Airports

See english.stackexchange.com/questions/337497/what-is-meant-by-memory-hog

https://english.stackexchange.com/questions/337497/what-is-meant-by-memory-hog

20

Overview of Spring WebMVC Communication
• Spring WebMVC communications
• Network communication uses

common Java types
• WebMVC endpoints send &

return Java collections in one
fell swoop
• Client latency may suffer & thus

not be as responsive as possible
• Memory is needed to buffer this

data at multiple points
• Addressed by Spring WebFlux

& reactive programming

See docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html#webflux

https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html

21

End of Overview of
Spring WebMVC

