Key Scheduler Operators for Project

Reactor Reactive Types (Part 3}

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize how Scheduler operators
are used with ParallelFlux

» These operators provide the
context to run other operators

in designated threads & thread
pools

* e.g., Schedulers.boundedElastic()

\4 Pool of worker thre2™

These operators also work with the Flux & Mono classes

Key Scheduler Operators
for Project Reactor
Reactive Types

3

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic() static Scheduler
operator boundedElastic ()

« Dynamically creates a bounded #
of ExecutorService-based workers

Tl
\\\\

Q’l of wo

S 2

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic() static Scheduler
operator boundedElastic ()

» Dynamically creates a bounded #
of ExecutorService-based workers

» Returns a new Scheduler that
is suited for I/O-bound work

e, threads can be dynamically
added or removed from the pool

S
14 ‘pOOI of worker threa®

Key Scheduler Operators for Project Reactor Reactive Types

’ The SChedL”ers'boundedEIaStIC() public abstract class Schedulers
Operator extends Object

Schedulers provides various scheduler flavors usable by publishon

» Dynamically creates a bounded # |or-ooocriveon:
Of ExeCUtorserVice'based Workers e parallel(): Optimized for fast Runnable non-blocking executions

e single(): Optimized for low-latency Runnable one-off executions

* Returns d NeEW SChedUIer that e boundedElastic(): Optimized for longer executions, an
iS Suited for I/O_bound Work alternative for blocking tasks where the number of active tasks (and
threads) is capped
° OptImIZEd for bIOCk|ng tasks e immediate ():to immediately run submitted Runnable instead of

scheduling them (somewhat of a no-op or "null object" scheduler)
e fromExecutorService(ExecutorService) to create new

instances around Executors

one used by operators requiring that flavor as their dete STl
instances are returned in a initialized state. & "y

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

« Returns a new Scheduler that
is suited for I/O-bound work

« Optimized for blocking tasks

* i.e., I/O-bound tasks not
compute-/CPU-bound tasks!

public abstract class Schedulers
extends Object

Schedulers provides various scheduler flavors usable by publishon

Or subscribeOn :

e parallel(): Optimized for fast Runnable non-blocking executions

e single(): Optimized for low-latency Runnable one-off executions

e boundedElastic(): Optimized for longer executions, an
alternative for blocking tasks where the number of active tasks (and
threads) is capped

e immediate ():to immediately run submitted Runnable instead of
scheduling them (somewhat of a no-op or "null object" scheduler)

e fromExecutorService(ExecutorService) ig

instances around Executors

Factories prefixed with new (eg. newBoundedE
Sstring) return a new instance of their flavor ofis
factories like boundedElastic () return a shar
one used by operators requiring that flavor as th&
instances are returned in a initialized state.

I/O bound tasks can benefit from more threads, where CPU-bound tasks can’t

Key Scheduler Operators for PrOJect Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

» Returns a new Scheduler that
is suited for I/O-bound work

 Either starts a new thread or reuses an idle one from a cache

Key Scheduler Operators for PrOJect Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

» Returns a new Scheduler that
is suited for I/O-bound work

The underlying threads can be evicted if idle for more than 60 seconds

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

« Returns a new Scheduler that
is suited for I/O-bound work

« Either starts a new thread or reuses an idle one from a cache
« The goal is to maximally utilize the CPU cores

10

Key Scheduler Operators for PrOJect Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

« Returns a new Scheduler that
is suited for I/O-bound work

« The max # of created threads is bounded by a cap
» By default, this # is ten times the # of available CPU cores

The underlying threads can be evicted if idle for more than 60 seconds

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Dynamically creates a bounded #
of ExecutorService-based workers

« Returns a new Scheduler that
is suited for I/O-bound work

« The max # of task submissions enqueued & deferred on each of
these backing threads is also bounded

« By default, 100K additional tasks
12

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic() return Options.instance ()
operator .getUrlFlowable ()

.parallel ()

» Used for making network calls, file .runOn (Schedulers.io())

I/O, database operations, etc.
.map (downloadAndStoreImage)

.sequential ()

e.g., download images from
remote web servers in parallel & -collect(Collectors.toList())
store them on the local computer

.doOnSuccess(...)

See github.com/douglascraigschmidt/LivelLessons/tree/master/Reactive/flux/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex5

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

» Implemented via “daemon threads”

* i.e., won't prevent the app from
exiting even if its work isn't done

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic() =
operator

@NonNull
public static @NonNull Scheduler io()

Returns a default, shared Scheduler instance intended for I0-bound work.
This can be used for asynchronously performing blocking IO.

The implementation is backed by a pool of single-threaded
ScheduledExecutorService instances that will try to reuse previously
started instances used by the worker returned by
Scheduler.createWorker () but otherwise will start a new backing
ScheduledExecutorService instance. Note that this scheduler may create
an unbounded number of worker threads that can result in system slowdowns

* Th e SC h ed u | ers. |O() (@) pe Fa tO r | N or outOfMemoryError. Therefore, for casual uses or when implementing an

operator, the Worker instances must be disposed via

RXJava iS Sim”ar Disposable.dispose().

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#io

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

Key Scheduler Operators for Project Reactor Reactive Types

» The Schedulers.boundedElastic() ComMIOnESo]
operator

public static ForkJoinPool commonPool()

Returns the common pool instance. This pool is statically
constructed; its run state is unaffected by attempts to
shutdown () or shutdownNow(). However this pool and any
ongoing processing are automatically terminated upon program
System.exit(int). Any program that relies on asynchronous
task processing to complete before program termination should
invoke commonPool() .awaitQuiescence, before exit.

Returns:

the common pool instance

« The Java common fork-join pool is also similar

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Key Scheduler Operators for PrOJect Reactor Reactive Types

» The Schedulers.boundedElastic()
operator

4_ Pool of worker thread®

« The Java common fork-join pool is also similar
 Especially when used with the ManagedBlocker mechanism..

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

End of Key Scheduler
Operators for Project Reactor
Reactive Types (Part 3)

27

