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Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies Flux
Flux operators create(), flatMap(), -create (makeEmitter (count,
& subscribe(), as well as FluxSink to _ sb) ,
create, multiply, & display BigFraction Fluxszrl‘k
objects asynchronously 'E}ZESR) owStrategy

.flatMap (bf1l ->
multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
sb) )

.subscribe
(blockingSubscriber) ;
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This example applies an overflow strategy




Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies Mono<BigFraction>
Flux operators create(), flatMap(), = multiplyFraction(BigFraction bfl,
& subscribe(), as well as FluxSink to BigFraction bf2,
create, multiply, & display BigFraction Scheduler scheduler,

i StringBuffer sb) {
objects asynchronously return Mono

« It also shows how to use Mono . fromSupplier (() -> bfl
operators fromSupplier() & .multiply (b£2))
subscribeOn()

.subscribeOn (scheduler) ;




Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies class BlockingSubscriber<T>
Flux operators create(), flatMap(), implements Subscriber<T> {
& subscribe(), as well as FluxSink to
create, multiply, & display BigFraction
objects asynchronously

final CountDownlLatch mLatch;

@Override
public void onComplete () {

ﬁiétch.countDown();
 In addition, it shows how to create }
& use a generic blocking Subscriber ,

» Can be applied to workaround the
lack of a blockingSubscribe() operator

However, this subscriber is “backpressure unaware”
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This class shows how to apply Project Reactor features
asynchronously to perform a range of Flux operations, including
FfromArray(), map(), FflatMap(), collect(), subscribeOn(), and
various types of thread pools. It also shows various Mono
operations, such as when(), firstWithSignal(), materialize(),
flatMap(), flatMapMany(), subscribeOn(), and the parallel thread
pool. In addition, it demonstrates how to combine the Java streams
framework with the Project Reactor framework.

*/
@SuppressWarnings("ALL")
public class FluxEx {
J**

* Create a random number generator.

*/
private static final Random sRANDOM = new Random();

*

Vi
* Test BigFraction multiplications by combining the Java streams
* framework with the Project Reactor framework and the Java
* common fork-join framework.
*/
public static Mono<Void> testFractionMultiplicationsStreams() {
StringBuffer sb =
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See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4
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