Applving Key Operators in Project Reactor-

Case Study ex4 (Part 3)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies Flux
Flux operators create(), flatMap(), -create (makeEmitter (count,
& subscribe(), as well as FluxSink to _ sb) ,
create, multiply, & display BigFraction Fluxszrl‘k
objects asynchronously 'E}ZESR) owStrategy

.flatMap (bf1l ->
multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies Flux
Flux operators create(), flatMap(), -create (makeEmitter (count,
& subscribe(), as well as FluxSink to _ sb) ,
create, multiply, & display BigFraction Fluxs;‘l‘k
objects asynchronously 'E‘P:;;R) owStrategy

.flatMap (bfl ->
multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

This example applies an overflow strategy

Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies Mono<BigFraction>
Flux operators create(), flatMap(), = multiplyFraction(BigFraction bfl,
& subscribe(), as well as FluxSink to BigFraction bf2,
create, multiply, & display BigFraction Scheduler scheduler,

i StringBuffer sb) {
objects asynchronously return Mono

« It also shows how to use Mono . fromSupplier (() -> bfl
operators fromSupplier() & .multiply (b£2))
subscribeOn()

.subscribeOn (scheduler) ;

Learning Objectives in this Part of the Lesson

« Part 3 of case study ex4 applies class BlockingSubscriber<T>
Flux operators create(), flatMap(), implements Subscriber<T> {
& subscribe(), as well as FluxSink to
create, multiply, & display BigFraction
objects asynchronously

final CountDownlLatch mLatch;

@Override
public void onComplete () {

ﬁiétch.countDown();
 In addition, it shows how to create }
& use a generic blocking Subscriber ,

» Can be applied to workaround the
lack of a blockingSubscribe() operator

However, this subscriber is “backpressure unaware”

Applying Key Operators
In Project Reactor to ex4

Applying Key Operators in Project Reactor to ex4

I Project

2a Structure

& Commit

F Pull Requests

% Favorites

(=]

]
x
2

ProjectFily € = = &

2: flux-ex4

>

H Git

src

main | java & € FluxEx

= main src/main
v java
> utils
@ o
> (€ FluxEx
m main.iml
= D:\Douglas Schmidt\Dropbox\Dc
gradle
Jidea
build
gradle
src
(] .classpath
o -gitignore
= -project
build.gradle
gradlew
= gradlew.bat
settings.gradle
Extensions

iIZ70D0 P Run @ Problems

File Edit View Navigate Code Analyze Refactor Build Run Tools Git Window Help
m testFractionMultiplicationsBlockingSubscriber

€ FluxExjava

@

Terminal

flux-ex3 [D:\Douglas Schmidt\Dropbox\Documents\opp\Pearson\LiveLessons\Reactive\Flux\ex4] - FluxEx java [flux-ex4.main]
LN Fllux-exs v | b # G
& exdjava settings.gradle (flux-ex4)

import

This class shows how to apply Project Reactor features
asynchronously to perform a range of Flux operations, including
FfromArray(), map(), FflatMap(), collect(), subscribeOn(), and
various types of thread pools. It also shows various Mono
operations, such as when(), firstWithSignal(), materialize(),
flatMap(), flatMapMany(), subscribeOn(), and the parallel thread
pool. In addition, it demonstrates how to combine the Java streams
framework with the Project Reactor framework.

*/
@SuppressWarnings("ALL")
public class FluxEx {
J**

* Create a random number generator.

*/
private static final Random sRANDOM = new Random();

*

Vi
* Test BigFraction multiplications by combining the Java streams
* framework with the Project Reactor framework and the Java
* common fork-join framework.
*/
public static Mono<Void> testFractionMultiplicationsStreams() {
StringBuffer sb =

A\ Build

The IDE modules below were removed by the Gradle project reload: flux-ex3.test // // You can open a dialog to select the ones you need to restore. (a minute ago)

= X

Gt ¥ v A o m BQ
L4

)

v g

&

@ Event Log
105:23 CRLF UTF-8 4spaces [master

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

End of Applying Key Methods
In Project Reactor:
Case Study ex4 (Part 3)

8

