
Applying Key Operators in Project Reactor: 
Case Study ex4 (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Part 3 of case study ex4 applies 

Flux operators create(), flatMap(), 
& subscribe(), as well as FluxSink to 
create, multiply, & display BigFraction
objects asynchronously

Flux
.create(makeEmitter(count,

sb),
FluxSink
.OverflowStrategy
.ERROR)

.flatMap(bf1 ->
multiplyFraction(bf1,

sBigReducedFraction,
Schedulers.parallel(),
sb))

.subscribe
(blockingSubscriber);



3

Learning Objectives in this Part of the Lesson
• Part 3 of case study ex4 applies 

Flux operators create(), flatMap(), 
& subscribe(), as well as FluxSink to 
create, multiply, & display BigFraction
objects asynchronously

This example applies an overflow strategy

Flux
.create(makeEmitter(count,

sb),
FluxSink
.OverflowStrategy
.ERROR)

.flatMap(bf1 ->
multiplyFraction(bf1,

sBigReducedFraction,
Schedulers.parallel(),
sb))

.subscribe
(blockingSubscriber);



4

Learning Objectives in this Part of the Lesson
• Part 3 of case study ex4 applies 

Flux operators create(), flatMap(), 
& subscribe(), as well as FluxSink to 
create, multiply, & display BigFraction
objects asynchronously
• It also shows how to use Mono 

operators fromSupplier() & 
subscribeOn()

Mono<BigFraction> 
multiplyFraction(BigFraction bf1,

BigFraction bf2,
Scheduler scheduler,
StringBuffer sb) {

return Mono
.fromSupplier(() -> bf1

.multiply(bf2))

.subscribeOn(scheduler);
}



5

Learning Objectives in this Part of the Lesson
• Part 3 of case study ex4 applies 

Flux operators create(), flatMap(), 
& subscribe(), as well as FluxSink to 
create, multiply, & display BigFraction
objects asynchronously
• It also shows how to use Mono 

operators fromSupplier() & 
subscribeOn()

• In addition, it shows how to create 
& use a generic blocking Subscriber
• Can be applied to workaround the 

lack of a blockingSubscribe() operator

class BlockingSubscriber<T>
implements Subscriber<T> {

...
final CountDownLatch mLatch;
...
@Override
public void onComplete() {
...
mLatch.countDown();

}
...

}

However, this subscriber is ”backpressure unaware”



6

Applying Key Operators 
in Project Reactor to ex4



7See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Applying Key Operators in Project Reactor to ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4


8

End of Applying Key Methods 
in Project Reactor:

Case Study ex4 (Part 3)


