Key Factory Method Operators

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators

« Factory method operators

» These operators create
Flux streams in various
ways in various Scheduler
contexts

* i.e., the two param
version of create()

See en.wikipedia.org/wiki/Factory method pattern



https://en.wikipedia.org/wiki/Factory_method_pattern

Key Factory Method
Operators in the Flux Class




Key Factory Method Operators in the Flux Class
« The two param create() operator static <T> Flux<T> create

oy Consumer<? super FluxSink<T>>
 Create a Flux capable of emitting (Cor pe
) emitter, FluxSink
multiple elements synchronously _OverflowStrategy
or asynchronously & that handles backpressure)

overflow

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class
« The two param create() operator static <T> Flux<T> create

iy Consumer<? super FluxSink<T>>
- Create a Flux capable of emitting (Cor P
) emitter, FluxSink
multiple elements synchronously

.OverflowStrategy
or asynchronously & that handles backpressure)
overflow :

_ Interface FluxSink<T>
« Param 1 emits any # of next()
signals followed by zero or one Type Parameters:
error() or complete() signals T- the value type

public interface FluxSink<T>

Wrapper APl around a downstream Subscriber for emitting
any number of next signals followed by zero or one
onError/onComplete.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.html



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.html

Key Factory Method Operators in the Flux Class

« The two param create() operator static <T> Flux<T> create

oy Consumer<? super FluxSink<T>>
 Create a Flux capable of emitting (emi frer Fluxzink

multiple elements synchronously .OverflowStrategy
or asynchronously & that handles backpressure)
overflow

« Param 1 emits any # of next()
signals followed by zero or one
error() or complete() signals

« Supports more dynamic use
cases than the Flux just() &
fromIterable() operators

See earlier lesson on “Key Factory Method Operators in the Flux Class (Part 1)




Key Factory Method Operators in the Flux Class
« The two param create() operator static <T> Flux<T> create

o Consumer<? super FluxSink<T>>
- Create a Flux capable of emitting (Cor pe
) emitter, FluxSink
multiple elements synchronously

.OverflowStrategy
or asynchronously & that handles backpressure)
overflow

Enum Constant and Description

BUFFER

Buffer all signals if the downstream can't keep up.

DROP

Drop the incoming signal if the downstream is not ready to receive it.

« Param 2 defines strategies for
ha nd I i ng Ove rﬂOW Signal an 111egalstateException when the downstream can't keep up

IGNORE

Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Key Factory Method Operators in the Flux Class
« The two param create() operator static <T> Flux<T> create

o Consumer<? super FluxSink<T>>
- Create a Flux capable of emitting (Cor pe
) emitter, FluxSink
multiple elements synchronously

.OverflowStrategy
or asynchronously & that handles backpressure)
overflow
"backpressure” is an odd
choice of terms here
. : / N\
« Param 2 defines strategies for
handling overflow

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Key Factory Method Operators in the Flux Class

» The two param create() operator static <T> Flux<T> create

oy Consumer<? super FluxSink<T>>
 Create a Flux capable of emitting (Cor pe
itiol | h emitter, FluxSink
multiple elements synchronously _OverflowStrategy
or asynchronously & that handles backpressure)

overflow

* Returns a Flux that emits all the
elements generated by the FluxSink

9



Key Factory Method Operators in the Flux Class

* The two param create() operator

 Create a Flux capable of emitting gl Ch
multiple elements synchronously =
or asynchronously & that handles

overflow Y.
Flux smkl i ; |
. addListener() removelistener()
.create (makeEmitter (count,
sb) create(OverflowStrategy.ERROR)
FluxSink B I
.OverflowStrategy ;% V V _
.ERROR) \ ‘ ‘ ‘ ‘ -
. subscribe Rapidly emit a stream of random
(blockingSubscriber) ; BigFraction objects in one fell swoop

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4



https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Key Factory Method Operators in the Flux Class

* The two param create() operator

 Create a Flux capable of emitting gl Ch
multiple elements synchronously =
or asynchronously & that handles

Flux . .
. addListener() removelistener()
.create (makeEmitter (count,
sb) create(OverflowStrategy.ERROR)
FluxSink L I
.OverflowStrategy i T V V
.ERROR) ‘ ' ‘ ‘ Ly
.subscribe \ Throw exception when events
(blockingSubscriber) ; can't be processed immediately

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4



https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Key Factory Method Operators in the Flux Class

* The two param create() operator

« Elements can be emitted from one
or more threads

8

addListener() removelistener()

create(OverflowStrategy.ERROR)

‘ ‘ >

12



Key Factory Method Operators in the Flux Class

* The two param create() operator

@CheckReturnvalue

@NonNull

@BackpressureSupport(value=SPECIAL)

@SchedulerSupport(value="none")

public static <T> @NonNull Flowable<T> create(@NonNull @NonNull FlowableOnSubscribe<T> source
@NonNull @NonNull BackpressureStrategy mode)

Provides an API (via a cold Flowable) that bridges the reactive world with the callback-style, generally non-
backpressured world.

Example:

Flowable.<Event>create(emitter -> {
Callback listener = new Callback() {

@0verride

public void onEvent(Event e) {
emitter.onNext(e);
if (e.isLast()) {

emitter.onComplete();

}

« RxJava’s Flowable.create() is similar }

@0verride
public void onFailure(Exception e) {

. However, the data types passed to | emttor nrr(e)
Create() differ AutoCloseable ¢ = api.someMethod(listener);

15
o i_e_, F|Owab|eonSUbSCFibe VS- emitter.setCancellable(c::close);
}, BackpressureStrategy.BUFFER);
Consumer<FluxSync>

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create



http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Key Factory Method Operators in the Flux Class

* The two param create() operator gansiete

static <T> Stream<T> generate(Supplier<T> s)

Returns an infinite sequential unordered stream
where each element is generated by the provided
Supplier. This is suitable for generating constant
streams, streams of random elements, etc.

Type Parameters:

T - the type of stream elements

Parameters:

s - the Supplier of generated elements

Returns:

a new infinite sequential unordered Stream

» Java Streams generate() does not

handle backpressure Stream.generate (() -> BigFractionUtils

///{makeBigFraction(new Random () ,
false))

Generate a stream of random,
large, & unreduced big fractions

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate



https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

End of Key Factory Method

Operators in the Flux Class
(Part 5)

15



