Key Transforming Operators

in the Flux Class (Part 2)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators

« Transforming operators

« Transform the values and/or
types emitted by a Flux

« e.g., flatMap()

Learning Objectives in this Part of the Lesson

» Recognize key Flux operators return Flux
.fromCallable(() -> BigFraction

.reduce (unreducedFraction))

« Transforming operators
- Transform the values and/or -subscribeOn (scheduler)

types emitted by a Flux .flatMap (reducedFraction ->

« e.g., flatMap() Flux
| —— .fromCallable(() ->
reducedFraction
.multiply

(sBigReducedFrac))

. subscribeOn

(scheduler)) ;

This lesson also describes the Project Reactor flatMap() concurrency idiom

Key Transforming Operators
in the Flux Class

Key Transforming Operators in the Flux Class
« The flatMap() operator <R> Flux<R> flatMap

. Function<? super T,
. Transform the elements emitted ¢ P

. ? extends Publisher<?
by this Flux asynchronously extends R>>

mapper)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Transforming Operators in the Flux Class

« The flatMap() operator <R> Flux<R> flatMap

. Function<? super T,
 Transform the elements emitted (P .
) ? extends Publisher<?
by this Flux asynchronously

extends R>>
 These elements are emitted into mapper)
inner Publishers

Key Transforming Operators in the Flux Class

« The flatMap() operator <R> Flux<R> flatMap

. Function<? super T,
 Transform the elements emitted (P .
A ? extends Publisher<?
by this Flux asynchronously

extends R>>
 These elements are emitted into mapper)
inner Publishers

« Each <T> input element is
mapped to a Publisher<R>

Key Transforming Operators in the Flux Class

« The flatMap() operator

* Transform the elements emitted
by this Flux asynchronously

 These elements are emitted into
inner Publishers

« That publisher will emit one
or more items

()

v

v v

YYY VUV VY

flatMap (O — - H +H»)
v v S T

Key Transforming Operators in the Flux Class

« The flatMap() operator <R> Flux<R> flatMap

. Function<? super T,
« Transform the elements emitted (P

. ? extends Publisher<?
by this Flux asynchronously extends R>>

mapper)

* These inner publishers are then
flattened into one Flux by merging

Key Transforming Operators in the Flux Class

N M (M |
The flatMap() operator | @O0 | >
» Transform the elements emitted ; ; r— N
by this Flux asynchronously K —’ Lot

« These inner publishers are then v ﬂa:M: (O;—t VI:ZI D; VI: v) v
flattened into one Flux by merging : P : — — —

* They thus can interleave I_Y Y Vv __ V¥ Yy

» Especially when used for I |

>

concurrent processing

See upcoming walkthrough of the “flatMap() concurrency idiom” example

Key Transforming Operators in the Flux Class

« The flatMap() operator

* Transform the elements emitted
by this Flux asynchronously

« It has similarities & differences
compared to map()

() |

A e
’ — B>
AT
HERIETEIETEE
flatMap (O — {1)
T

1_>

/

flatMap() can transform the values
andyor type of elements it processes

Key Transforming Operators in the Flux Class

« The flatMap() operator

* Transform the elements emitted
by this Flux asynchronously

« It has similarities & differences
compared to map()

=TT

Y YV VYVY VYV VN

flatMap (O — H-»)

|

The # of output elements may
differ from the # of input elements

12

Key Transforming Operators in the Flux Class

« The flatMap() operator return Flux
.fromCallable(() -> BigFraction

.reduce (unreducedFraction))

« This method is often used to .subscribeOn (scheduler)
trigger concurrent processing

.flatMap (reducedFraction ->
Flux
.fromCallable(() ->
reducedFraction
.multiply
(sBigReducedFrac))

.subscribeOn
(scheduler)) ;

See upcoming discussion on the Project Reactor flatMap() concurrency idiom

Key Transforming Operators in the Flux Class

« The flatMap() operator return Flux
.fromCallable(() -> BigFraction

.reduce (unreducedFraction))

« This method is often used to .subscribeOn (scheduler)

trigger concurrent processing
.flatMap (reducedFraction ->

Flux
.fromCallable(() ->
reducedFraction

.multipl
Return a Flux to a multiplied big mlz sBiZRZ ducedFrac))
fraction using the Project Reactor
flatMap() concurrency idiom

.subscribeOn
(scheduler)) ;

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Transforming Operators in the Flux Class

« The flatMap() operator —g O Q >
v v v v

‘ flatMap { O--I>—O—<>—|9 } \

« RxJava’s Observable.flatMap() 5 cv 5 0 cv é Y >
operator works the same way '

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Transforming Operators in the Flux Class
« The flatMap() operator flatMap

<R> Stream<R> flatMap(
Function<? super T,? extends Stream<? extends R>> mapper)

Returns a stream consisting of the results of replacing each
element of this stream with the contents of a mapped stream
produced by applying the provided mapping function to each
element. Each mapped stream is closed after its contents have
been placed into this stream. (If a mapped stream is null an
empty stream is used, instead.)

List<String> a = List.of("d", "g"),
« Similar to the Java Streams List<String> b = List.of("a", "c");
flatMap() operator Stream
.of (a, b)
.flatMap (List: :stream)
Flatten, sort, & print / .sorted ()
two lists of strings .forEach (System.out: :println) ;

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.htmli#flatMap

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Key Transforming Operators in the Flux Class

« flatMap() doesn’t guarantee the order of

the items in the resulting stream

@)

OUT OF

| ORDER |

17

Key Transforming Operators in the Flux Class

« flatMap() doesn’t guarantee the order of (OD——»
the items in the resulting stream AO ~

« use concatMap() if order matters D D“|—>: | iy
: S L
vV VYN vy
concatMap(Q — —D-D—|—>)
v v vy

—»

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#concatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

The Project Reactor
flatMap() Concurrency Idiom

19

The Project Reactor flatMap() Concurrency Idiom

 flatMap()’s often used when each return Flux
item emitted by a stream needs to .fromIterable (bigFractions)
apply its own threading operators

.flatMap (bf -> Mono
.fromCallable(() -> bf

.multiply (sBigFrac))

.subscribeOn
(Schedulers
.parallel()))

.reduce (BigFraction: : add)

20

The Project Reactor flatMap() Concurrency Idiom
 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)
apply its own threading operators

. . .flatMap (bf -> M
 This structure is known as the atMap ono

.fromCallable(() -> bf

flatMap() concurrency idiom .multiply (sBigFrac))

.subscribeOn
(Schedulers
.parallel()))

.reduce (BigFraction: :add)

See ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

https://ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

The Project Reactor flatMap() Concurrency Idiom

« flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

» This structure is known as the
“flatMap() concurrency idiom”

return Flux
.fromIterable (bigFractions)

Create a Flux BigFraction
stream from a BigFraction list

.flatMap (bf -> Mono

.fromCallable(() -> bf
.multiply (sBigFrac))

.subscribeOn
(Schedulers
.parallel()))

.reduce (BigFraction: :add)

22

The Project Reactor flatMap() Concurrency Idiom

 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)

apply its own threading operators

]) .flatMap (bf -> Mono
e This structure is known as the P

“flatMap() concurrency idiom” /

Iterate thru the Flux stream multiplying
big fractions in the parallel thread pool

.fromCallable(() -> bf
.multiply (sBigFrac))

.subscribeOn
(Schedulers
.parallel()))

.reduce (BigFraction: :add)

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3/src/main/java/FluxEx.java

The Project Reactor flatMap() Concurrency Idiom

 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)

apply its own threading operators

i) .flatMap (bf -> Mono
e This structure is known as the P

n . ” .fromCallable(() -> bf
flatMap() concurrency idiom multiply (sBigFrac))

Each BigFraction in the stream is processed
concurrently in the parallel thread pool

.subscribeOn
(Schedulers
.parallel()))

.reduce (BigFraction: :add)

24

The Project Reactor flatMap() Concurrency Idiom
 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)
apply its own threading operators

: i .flatMap (bf -> Mono
 This structure is known as the P

n . ” .fromCallable(() -> bf
flatMap() concurrency idiom

/////////’ .multiply (sBigFrac))
Multiply each BigFraction in a .subscribeOn

thread from the parallel thread pool (Schedulers
.parallel()))

.reduce (BigFraction: :add)

25

The Project Reactor flatMap() Concurrency Idiom
 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)
apply its own threading operators

: i .flatMap (bf -> Mono
 This structure is known as the P

.fromCallable(() -> bf

flatMap() concurrency idiom .multiply (sBigFrac))

Arrange to process each emitted .subscribeOn
BigFraction in the parallel thread pool/ [(Schedulers

.parallel()))

.reduce (BigFraction: :add)

26

The Project Reactor flatMap() Concurrency Idiom
 flatMap()’s often used when each return Flux

item emitted by a stream needs to .fromIterable (bigFractions)
apply its own threading operators

: i .flatMap (bf -> Mono
 This structure is known as the P

.fromCallable(() -> bf

flatMap() concurrency idiom .multiply (sBigFrac))

: .subscribeOn
After all the concurrent processing (Schedulers

completes then add all the Big
Fractions to compute the final sum -parallel()))

.reduce (BigFraction: :add)

27

Comparing map & flatMap()

28

Comparing map() & flatMap()

« The map() vs. flatMap() operators

29

Comparing map() & flatMap()

« The map() vs. flatMap() operators O O O =
« The map() operator transforms each ; H P
value in a Flux stream into a single map (O—[])
value i 5 H
* i.e., intended for synchronous, non- L] I >

blocking, 1-to-1 transformations

ol
sl

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

Comparing map() & flatMap()

« The map() vs. flatMap() operators O O O =
N T
map (O—[_])
v v v v
« The flatMap() operator transforms each] | >
value in a Flux stream into an arbitrary ~
number (zero or more) values ‘ i e
* i.e., intended for asynchronous (often . T - clig

—H>
non-blocking) 1-to-N transformations u AR

Y YV YVY VY VY

flatMap (O — - H H»)
i T
HEHOHEH—~

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

End of Key Transforming

Operators in the Flux Class
(Part 2)

32

