Key Factory Method Operators

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Flux operators
« Factory method operators

« These operators create
Flux streams in various
ways

* e.g., generate()

See en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

Key Factory Method
Operators in the Flux Class

Key Factory Method Operators in the Flux Class

« The generate() operator static <T> Flux<T> generate
- Create a Flux by generating (Consumer<SynchronousSink<T>>

t
signals 1-by-1 via a callback generator)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#generate

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

 The generate() operator static <T> Flux<T> generate
- Create a Flux by generating (Consumer<SynchronousSink<T>>

t
signals 1-by-1 via a callback generator)

« The Consumer param is called in a Interface Consumer<T>
loop after a downstream Subscriber Hoe Parametere
haS SUbscribed T - the type of the input to the operation

All Known Subinterfaces:

Stream.Builder<T>

Functional Interface:

This is a functional interface and can
therefore be used as the assignment target for
a lambda expression or method reference.

See docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html?is-external=true

Key Factory Method Operators in the Flux Class

« The generate() operator static <T> Flux<T> generate
. Create a Flux by generating (Consumer<SynchronousSink<T>>

; : generator)
signals 1-by-1 via a callback

L The Consumer param is Ca”ed in a Interface to produce synchronously "one signal" to an underlying Subscriber.
H At t o lland/ ete e e) should be called i ti f
loop after a downstream Subscriber | & e ™ ”
Calling a outside of a generator consumer or function, e.g. using an async callback, is
has subscribed : : g uingn s

forbidden. You can FluxSink or ink based generators for these situations

* The callback should call next(), ethod summary
error(), or complete() on a
SynchronousSink to signal a e
value or a terminal event 0

Return the current subscriber

void (Throwable e)

void (T t)
Try emitting, might throw an unchecked exception.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

Key Factory Method Operators in the Flux Class

« The generate() operator static <T> Flux<T> generate
Create a Flux by generating (Consumer<SynchronousSink<T>>

t
signals 1-by-1 via a callback generator)

« The new Flux instance is returned

Key Factory Method Operators in the Flux Class

« The generate() operator static <T> Flux<T> generate
- Create a Flux by generating (Consumer<SynchronousSink<T>>

t
signals 1-by-1 via a callback generator)

« The new Flux instance is returned

 This Flux is “cold,” which only emits
item upon subscription

See www.vinsguru.com/reactor-hot-publisher-vs-cold-publisher

http://www.vinsguru.com/reactor-hot-publisher-vs-cold-publisher

Key Factory Method Operators in the Flux Class

« The generate() operator static <T> Flux<T> generate
Create a Flux by generating (Consumer<SynchronousSink<T>>

t
signals 1-by-1 via a callback generator)

« The new Flux instance is returned

« Each observer has its own set of
items emitted to it

Key Factory Method Operators in the Flux Class

* The generate() Operator generate ((sink) — sink.next (clock.seconds()))

oIt v v vy
It is only allowed to generate PN P o W

one event at a time, which <& N\ < |

supports backpressure
Flux
.generate ((SynchronousSink<BigFraction> sink) -> sink
.next (BigFractionUtils
.makeBigFraction (sRANDOM,
false)))

See www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

http://www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

Key Factory Method Operators in the Flux Class

* The generate() operator generate ((sink) — sink.next (clock.seconds()))

oIt v v vy
It is only allowed to generate PN P o W

one event at a time, which <& N\ < |

supports backpressure

Flux
.generate ((SynchronousSink<BigFraction> sink) -> sink

.next (BigFractionUtils
\\\\\ .makeBigFraction (sRANDOM,

false)))

Generate an infinite stream of
random unreduced big fractions

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Factory Method Operators in the Flux Class

* The generate() Operator generate ((sink) — sink.next (clock.seconds()))

oIt v v vy
It is only allowed to generate PN P o W

one event at a time, which <& N\ < |

supports backpressure
Flux
.generate ((SynchronousSink<BigFraction> sink) -> sink
.next (BigFractionUtils
.makeBigFraction (sRANDOM,
false)))

. take (sMAX FRACTIONS)) —
- — | Can be used with take() to limit

the number of elements generated

See earlier lesson on “Key Suppressing Operators in the Flux Class”

Key Factory Method Operators in the Flux Class

» The generate() operator

multithreaded
source

« It is only allowed to generate
one event at a time, which : :
supports backpressure : V. v

 In contrast, create() simply sink :
@

produces events whenever addListener() removeListener()

it wishes to do so

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Factory Method Operators in the Flux Class

« The generate() operator

« It is only allowed to generate
one event at a time, which
supports backpressure

 In contrast, create() simply
produces events whenever
it wishes to do so

* i.e., it ignores backpressure

See www.wideopeneats.com/i-love-lucy-chocolate-factory

https://www.wideopeneats.com/i-love-lucy-chocolate-factory/

Key Factory Method Operators in the Flux Class

« The generate() operator generate

o]

generator() condition(n) ? resultSelector(n) : |

n=initialState()

e.g. n-l;-i- { (n<6)? ; |

Y YV Vy

- RxJava's Observable.generate() A‘J‘O‘O: >
works in a similar way

Observable
.generate ((Emitter<BigFraction> emit) -> emit
.onNext (BigFractionUtils

Generate a stream of random, | — .makeBigFraction (sRANDOM,
large, & unreduced big fractions false)))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#generate

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Factory Method Operators in the Flux Class

» The generate() operator

 Similar to Stream.generate()

in Java Streams Stream

large, & unreduced big fractions

dgenerate

static <T> Stream<T> generate(Supplier<T> s)

Returns an infinite sequential unordered stream where each
element is generated by the provided Supplier. This is suitable
for generating constant streams, streams of random elements, etc.

Type Parameters:

T - the type of stream elements
Parameters:

s - the Supplier of generated elements

Returns:

a new infinite sequential unordered Stream

.generate(() -> BigFractionUtils
Generate a stream of random, | ——

.makeBigFraction (new Random() ,
false))

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

End of Key Factory Method

Operators in the Flux Class
(Part 3)

17

