
Key Factory Method Operators
in the Flux Class (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• These operators create

Flux streams in various
ways
• e.g., generate()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the Flux Class

4

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#generate

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• The Consumer param is called in a

loop after a downstream Subscriber
has subscribed

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

See docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html?is-external=true

6

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• The Consumer param is called in a

loop after a downstream Subscriber
has subscribed
• The callback should call next(),

error(), or complete() on a
SynchronousSink to signal a
value or a terminal event

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

7

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• The Consumer param is called in a

loop after a downstream Subscriber
has subscribed

• The new Flux instance is returned

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

8

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• The Consumer param is called in a

loop after a downstream Subscriber
has subscribed

• The new Flux instance is returned
• This Flux is “cold,” which only emits

item upon subscription

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

See www.vinsguru.com/reactor-hot-publisher-vs-cold-publisher

http://www.vinsguru.com/reactor-hot-publisher-vs-cold-publisher

9

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• The Consumer param is called in a

loop after a downstream Subscriber
has subscribed

• The new Flux instance is returned
• This Flux is “cold,” which only emits

item upon subscription
• Each observer has its own set of

items emitted to it

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate
(Consumer<SynchronousSink<T>>
generator)

10

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure

Key Factory Method Operators in the Flux Class

See www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

Flux
.generate((SynchronousSink<BigFraction> sink) -> sink

.next(BigFractionUtils
.makeBigFraction(sRANDOM,

false)))
...

http://www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

11

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure

Key Factory Method Operators in the Flux Class

Flux
.generate((SynchronousSink<BigFraction> sink) -> sink

.next(BigFractionUtils
.makeBigFraction(sRANDOM,

false)))
... Generate an infinite stream of

random unreduced big fractions

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3/src/main/java/FluxEx.java

12

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure

Key Factory Method Operators in the Flux Class

See earlier lesson on “Key Suppressing Operators in the Flux Class”

Flux
.generate((SynchronousSink<BigFraction> sink) -> sink

.next(BigFractionUtils
.makeBigFraction(sRANDOM,

false)))
.take(sMAX_FRACTIONS)
... Can be used with take() to limit

the number of elements generated

13

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure
• In contrast, create() simply

produces events whenever
it wishes to do so

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

14

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure
• In contrast, create() simply

produces events whenever
it wishes to do so
• i.e., it ignores backpressure

Key Factory Method Operators in the Flux Class

See www.wideopeneats.com/i-love-lucy-chocolate-factory

https://www.wideopeneats.com/i-love-lucy-chocolate-factory/

15

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure

• RxJava’s Observable.generate()
works in a similar way

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#generate

Observable
.generate((Emitter<BigFraction> emit) -> emit

.onNext(BigFractionUtils
.makeBigFraction(sRANDOM,

false))) ...
Generate a stream of random,

large, & unreduced big fractions

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

16See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate

• The generate() operator
• Create a Flux by generating

signals 1-by-1 via a callback
• It is only allowed to generate

one event at a time, which
supports backpressure

• RxJava’s Observable.generate()
works the same

• Similar to Stream.generate()
in Java Streams

Key Factory Method Operators in the Flux Class

Stream
.generate(() -> BigFractionUtils

.makeBigFraction(new Random(),
false))

Generate a stream of random,
large, & unreduced big fractions

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

17

End of Key Factory Method
Operators in the Flux Class

(Part 3)

