
Key Terminal Operators in the Flux Class

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators
• Factory method operators
• Transforming operators
• Action operators
• Combining operators
• Terminal operators
• Terminate a Flux stream &

trigger all the processing of
operators in the stream
• e.g., subscribe()

3

Key Terminal Operators
in the Flux Class

4

• The subscribe() operator
• Subscribe a Consumer to this

Flux

Key Terminal Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribe

Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

5

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator consumes all

elements in the sequence,
handles errors, & reacts to
completion

Key Terminal Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

6

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator consumes all

elements in the sequence,
handles errors, & reacts to
completion
• This subscription requests

unbounded demand
• i.e., Long.MAX_VALUE

Key Terminal Operators in the Flux Class
Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

7

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator consumes all

elements in the sequence,
handles errors, & reacts to
completion
• This subscription requests

unbounded demand
• Signals emitted to this

method are represented by the following regular expression:

Key Terminal Operators in the Flux Class

onNext()*(onComplete()|onError())?

8

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator consumes all

elements in the sequence,
handles errors, & reacts to
completion

• A Disposable is returned, which
indicates a task or resource that
can be cancelled/disposed

Key Terminal Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/Disposable.html

Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

https://projectreactor.io/docs/core/release/api/reactor/core/Disposable.html

9

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator consumes all

elements in the sequence,
handles errors, & reacts to
completion

• A Disposable is returned, which
indicates a task or resource that
can be cancelled/disposed
• Disposables can be accumulated

& disposed in one fell swoop!

Key Terminal Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/Disposable.Composite.html

Disposable.Composite
mDisposables;

...

mDisposables =
Disposables.composite
(mPublisherScheduler,
mSubscriberScheduler,
mSubscriber);

...

mDisposables.dispose();

https://projectreactor.io/docs/core/release/api/reactor/core/Disposable.Composite.html

10

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Flux Class
Flux
.fromIterable
(bigFractionList)

.map(fraction -> fraction
.multiply(sBigReducedFraction))

.subscribe(fraction -> sb
.append(" = "
+ fraction
.toMixedString()

+ "\n"),
error -> { sb
.append("error"); ...

},
() -> BigFractionUtils

.display(sb.toString()));

Initiate processing
& handle outputs

See Reactive/flux/ex1/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

11

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Flux Class
Flux
.fromIterable
(bigFractionList)

.map(fraction -> fraction
.multiply(sBigReducedFraction))

.subscribe(fraction -> sb
.append(" = "
+ fraction
.toMixedString()

+ "\n"),
error -> { sb
.append("error"); ...

},
() -> BigFractionUtils

.display(sb.toString()));

Normal
processing

12

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Flux Class
Flux
.fromIterable
(bigFractionList)

.map(fraction -> fraction
.multiply(sBigReducedFraction))

.subscribe(fraction -> sb
.append(" = "
+ fraction
.toMixedString()

+ "\n"),
error -> { sb
.append("error"); ...

},
() -> BigFractionUtils

.display(sb.toString()));

Error
Processing

13

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Flux Class
Flux
.fromIterable
(bigFractionList)

.map(fraction -> fraction
.multiply(sBigReducedFraction))

.subscribe(fraction -> sb
.append(" = "
+ fraction
.toMixedString()

+ "\n"),
error -> { sb
.append("error"); ...

},
() -> BigFractionUtils

.display(sb.toString()));

Completion
Processing

14

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain
• Calling this method will not

block the caller thread
• For async streams this method

returns & processing continues
until the upstream terminates
normally or with an error

Key Terminal Operators in the Flux Class

15

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain
• Calling this method will not

block the caller thread
• For async streams this method

returns & processing continues
until the upstream terminates
normally or with an error

• These semantics motivate the need for the AsyncTaskBarrier framework!

Key Terminal Operators in the Flux Class

See Reactive/mono/ex1/src/main/java/utils/AsyncTaskBarrier.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex1/src/main/java/utils/AsyncTaskBarrier.java

16

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain
• Calling this method will not

block the caller thread
• Other versions of subscribe()

support different capabilities

Key Terminal Operators in the Flux Class
Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer,
Consumer<? super Subscription>
subscriptionConsumer)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribe

Pass a custom Consumer called on
initial subscribe() signal that can

apply backpressure & other features

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

17

• The subscribe() operator
• Subscribe a Consumer to this

Flux
• This operator triggers all

the processing in a chain
• Calling this method will not

block the caller thread
• Other versions of subscribe()

support different capabilities
• RxJava’s Observable.subscribe()

works the same

Key Terminal Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribe

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

18

End of Key Terminal
Operators in the Flux Class

