Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know how Project Reactor
Flux supports backpressure

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 11legalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST
Downstream will get only the latest signals from upstream.

Publisher

request(3)

Subscriber

onNext()

L

onNext()

onNext()

Motivation for Back
pressure Mechanisms

Motivation for Backpressure Mechanisms

« Backpressure is needed for systems where Publisher(s) supply events faster
than Subscriber(s) can consume them

e) e D e)

10k events per second 7.5k events per second

Publisher I Subscriber > GUI

_ y, \#) \ y,

7.5k events per second

See www.baeldung.com/spring-webflux-backpressure

https://www.baeldung.com/spring-webflux-backpressure

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time

throughout a reactive system i%
D Buffering W D

(\ (\ 2.5k events (
per second

10k events per second
> 7.5k events per secon d

Publisher Subscriber - GUI

7.5k events per second
2.5k events
per second \

Slow the Publisher down to a 7.5k events per second o]
rate the Subscriber can process pping

May not always be possible, especially for cyber-physical systems

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time
throughout a reactive system

Subscriber can store the events /D/B . W D

temporarily until it can process it

(\ (\ 2.5k events (
per second
10k events per second
> 7.5k events per second

Publisher Subscriber —p GUI

7.5k events per second
2.5k events
per second \

- J]] *J -

U

7.5k events per second
Dropping

May eventually cause “out-of-memory” exceptions!

Motivation for Backpressure Mechanisms

« Backpressure can be applied in various ways & at various points of time

throughout a reactive system i%
D Buffering W D

(\ (\ 2.5k events (
per second
10k events per second
> 7.5k events per second

Publisher Subscriber —p GUI

N e T € 9

U

Discard events that cant Fsk events per second —]
5 c roppin
be processed immediately i

7.5k events per second
2.5k events
per second \

May be problematic if all events contain valuable data

Overview of Backpressure
iIn Project Reactor Flux

Overview of Backpressure in PrOJect Reactor Fqu

 Project Reactor Flux supports several
types of backpressure

t &t LOWETHAT ONE

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor

Overview of Backpressure in Project Reactor Flux
 Project Reactor Flux supports several Publisher Subscriber

types of backpressure, e.g. . request(3)
 Backpressure-aware Subscriber(s) \ onNext() .
can inform Publisher(s) how much . onNext() |
data they can consume . onNext() = .
\ @

10

Overview of Backpressure in Project Reactor Flux

» Project Reactor Flux supports several
types of backpressure, e.g.

« Backpressure-aware Subscriber(s)
can inform Publisher(s) how much
data they can consume

« The goal is to avoid overwhelming
memory/processing resources

* i.e., flow-control Publisher(s) so they
don’t generate events faster than
Subscriber(s) can consume them

See www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

http://www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

Overview of Backpressure in Project Reactor Flux

 Project Reactor Flux supports several = void onSubscribe
types of backpressure, e.g. (Subscription subscription) {

: mSubscription =
» Backpressure-aware Subscriber(s) pEe _
. : subscription;
can inform Publisher(s) how much
data they can consume subscription
.request (mRequestSize) ;

}

» Requires Publisher(s) & Subscriber(s)
to interact

Subscriber(s) call the request() method on a Subscription passed
by Publisher(s) to Subscriber(s) via the onSubscribe() hook method

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Overview of Backpressure in Project Reactor Flux

 Project Reactor Flux supports several public static enum Fluxink.Overflovstratesy
types of backpressure, e.g. -

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

¢ Non-baCkpreSSU re-awa re Su bscrl ber(S) ;E:f)::};ll signals if the downstream can't keep up.
can apply an overflow strategy if they |
can lt keep u p Wlth fa Ster Pu bl Isher(s) Drop the incoming signal if the downstream is not ready to receive it.

ERROR

Signal an 111egalstateException when the downstream can't keep up

IGNORE

Completely ignore downstream backpressure requests.

LATEST
Downstream will get only the latest signals from upstream.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Overview of Backpressure in Project Reactor Flux

» Project Reactor Flux supports several
types of backpressure, e.g.

» Non-backpressure-aware Subscriber(s)
can apply an overflow strategy if they
can't keep up with faster Publisher(s)

« i.e., non-flow-controlled Publisher(s)

14

Overview of Flux Over
flow Strategies

15

Overview of Flux Overflow Strategies
° FIUX Overﬂow Strategles Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.htm

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

Overview of Flux Overflow Strategies

° FIUX Overflow Strategies Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
L— Buffer all signals if the downstream can't keep up.

,4// Va/ues are buﬁ"éfed SO that Drop the incoming signal if the downstream is not ready to receive it.
subscriber can receive all values

Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

17

Overview of Flux Overflow Strategies

° FIUX Overflow Strategies Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

Df Op the mOSt Vq ecent' On/vext() Signal an 11legalstateException When the downstream can't keep up
value if the downstream cant
keep U,D beca use /fS l'O %, S/OW Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

18

Overview of Flux Overflow Strategies

° FIUX Overflow Strategies Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER

Throw the OverflowException
If the downstream can’t keep
U,O due l'O S/OW/?E’SS \ Drop the incoming signal if the downstream is not ready to receive it.

Buffer all signals if the downstream can't keep up.

DROP

™~ ERROR
Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

19

Overview of Flux Overflow Strategies

° FIUX Overflow Strategies Say hOW to public static enum FluxSink.OverflowStrategy

extends Enum<FluxSink.OverflowStrategy>

handle emltted Items that Can’t be Enumeration for backpressure handling.
processed as fast as they're received

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER

Buffer all signals if the downstream can't keep up.

There is no buffering or dropping,
SO SUbSCT lb er (5) m USt han d/ € Drop the incoming signal if the downstream is not ready to receive it.
overflow of they will receive an error

\ Signal an 11legalstateException When the downstream can't keep up

IGNORE

Completely ignore downstream backpressure requests.

LATEST

Downstream will get only the latest signals from upstream.

20

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

Only key the latest onNext()
value, overwriting any previous
value if the downstream cant

keep up because its too slow

T

public static enum FluxSink.OverflowStrategy
extends Enum<FluxSink.OverflowStrategy>

Enumeration for backpressure handling.

Enum Constant Summary

Enum Constants

Enum Constant and Description

BUFFER
Buffer all signals if the downstream can't keep up.

DROP
Drop the incoming signal if the downstream is not ready to receive it.

ERROR
Signal an 111egalstateException when the downstream can't keep up

IGNORE
Completely ignore downstream backpressure requests.

S LATEST

Downstream will get only the latest signals from upstream.

21

Overview of Flux Overflow Strategies

* Flux overflow strategies say how o | =« e = mem et e 2 W
h a n d Ie e m itted items that Ca n ’t be Programmatically create a F1ux with the capability of emitting multiple elements in a synchronous or
asynchronous manner through the Fluxsink AP. This includes emitting elements from multiple threads.
’ -
processed as fast as they're received

 These strategies can be provided s
via the two param version of the '
Flux.create() operator

sinkl

-
addListener() removeListener()

create(OverflowStrategy.LATEST)

— 00— 0 —

This Flux factory is useful if one wants to adapt some other multi-valued async APl and not worry about
cancellation and backpressure (which is handled by buffering all signals if the downstream can't keep up).

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies
 Flux overflow strategies say how to Flux

handle emitted items that can't be .create (makeEmitter (count,
processed as fast as they're received sb) ,
] . FluxSink
. T_hese strategies can be_ provided .OverflowStrategy
via the two param version of the .ERROR)

Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

.flatMap (bf1l ->
multiplyFraction (bfl,
sBigReducedFraction,

Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

» These strategies can be provided
via the two param version of the
Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

Rapidly emit a stream of random
BigFraction objects in one fell swoop

Flux
.create (makeEmitter (count,

sb) ,

FluxSink
.OverflowStrategy
.ERROR)

.flatMap (bfl ->

multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
sb))

.subscribe
(blockingSubscriber) ;

24

Overview of Flux Overflow Strategies

 Flux overflow strategies say how to Flux
handle emitted items that can’t be .create (makeEmitter (count,

processed as fast as they're received sb) ,
] . FluxSink
. T_hese strategies can be_ provided .OverflowStrategy
via the two param version of the .ERROR)

Flux.create() operator

 Specify the overflow mode to
apply if Subscriber can’t keep
up with Publisher

.flatMap (bfl ->
multiplyFraction (bfl,
sBigReducedFraction,
Schedulers.parallel (),
Throw exception when events sb))
can't be processed immediately

.subscribe
(blockingSubscriber) ;

25

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be mlyesde
processed as fast as they're received -

» These strategies can be provided
via the two param version of the 5 :
Flux.create() operator sink § ¥

o o
addListener() removeListener()

 This operator is different than the
one param version of Flux.create() \

This Flux.create() operator
does not support backpressure

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they're received

» They can also be provided via other

Flux onBackpressure*() operators

¢ | want to deal with backpressure "errors" (request max from
upstream and apply the strategy when downstream does not

produce enough request)...

o by throwing a special lllegalStateException:

Flux#onBackpressureError

o by dropping excess values: Flux#onBackpressureDrop
= _..except the last one seen: Flux#onBackpressurelLatest

o by buffering excess values (bounded or unbounded):

Flux#onBackpressureBuffer

= ...and applying a strategy when bounded buffer also
overflows: Flux#onBackpressureBuffer with a

BufferOverflowStrategy

See projectreactor.io/docs/core/release/reference/#which.errors

https://projectreactor.io/docs/core/release/reference/

Overview of Flux Overflow Strategies

* Flux overflow strategies say how to =~ component
handle emitted items that can’t be .mouseMoves ()

processed as fast as they're received -onBackpressureDrop ()
.publishOn

(Schedulers.parallel (),
1)
.subscribe (event ->
compute (event.x,
event.y));

» They can also be provided via other
Flux onBackpressure*() operators

« onBackpressureDrop()

« Ignore all streamed items that
can’t be processed until down
stream can accept more of them

See Flux.html#onBackpressureDrop

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

 Flux overflow strategies say how to =~ component

handle emitted items that can’t be -mgseili‘:ks () N
processed as fast as they’re received -onBackpressurelatest ()
.publishOn

(Schedulers.parallel())
.subscribe (event ->
compute (event.x,

» They can also be provided via other event.y),
* Throwable: :
Flux onBackpressure*() operators

printStackTrace) ;
« onBackpressurelLatest()

 Like the DROP strategy, but it
keeps the last emitted item

See Flux.html#onBackpressurelatest

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Overview of Flux Overflow Strategies

« Flux overflow strategies say how to =~ Flux
handle emitted items that can’t be .range (1, 1_000_000)

processed as fast as they’re received '°m?i“63kpr essureBuffer

BufferOverflowStrategy
.DROP_OLDEST)
.publishOn

. : : (Schedulers.parallel())
They can also be provided via other 17"~ e -> { },

b S
Flux onBackpressure*() operators Throwable: -
« onBackpressureBuffer() printStackTrace) ;

* Creates a bounded or unbounded
buffer to hold emitted items that
can't be processed by downstream

See Flux.html#onBackpressureBuffer

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

End of Overview of
Backpressure Models in
Project Reactor Flux

31

