
Overview of Backpressure Models
in the Project Reactor Flux

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand key classes in

the Project Reactor API
• Know how Project Reactor

Flux supports backpressure

3

Motivation for Back
pressure Mechanisms

4

• Backpressure is needed for systems where Publisher(s) supply events faster
than Subscriber(s) can consume them

Motivation for Backpressure Mechanisms

See www.baeldung.com/spring-webflux-backpressure

Subscriber

https://www.baeldung.com/spring-webflux-backpressure

5

• Backpressure can be applied in various ways & at various points of time
throughout a reactive system

Motivation for Backpressure Mechanisms

Slow the Publisher down to a
rate the Subscriber can process

Subscriber

May not always be possible, especially for cyber-physical systems

6

• Backpressure can be applied in various ways & at various points of time
throughout a reactive system

Motivation for Backpressure Mechanisms

Subscriber can store the events
temporarily until it can process it

Subscriber

May eventually cause “out-of-memory” exceptions!

7

• Backpressure can be applied in various ways & at various points of time
throughout a reactive system

Motivation for Backpressure Mechanisms

Discard events that can’t
be processed immediately

Subscriber

May be problematic if all events contain valuable data

8

Overview of Backpressure
in Project Reactor Flux

9

• Project Reactor Flux supports several
types of backpressure

Overview of Backpressure in Project Reactor Flux

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor

10

• Project Reactor Flux supports several
types of backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume

Overview of Backpressure in Project Reactor Flux

11

• Project Reactor Flux supports several
types of backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume
• The goal is to avoid overwhelming

memory/processing resources
• i.e., flow-control Publisher(s) so they

don’t generate events faster than
Subscriber(s) can consume them

Overview of Backpressure in Project Reactor Flux

See www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

http://www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

12

• Project Reactor Flux supports several
types of backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume
• The goal is to avoid overwhelming

memory/processing resources
• Requires Publisher(s) & Subscriber(s)

to interact

Overview of Backpressure in Project Reactor Flux

Subscriber(s) call the request() method on a Subscription passed
by Publisher(s) to Subscriber(s) via the onSubscribe() hook method

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

void onSubscribe
(Subscription subscription){
mSubscription =
subscription;

subscription
.request(mRequestSize);

}

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

13

• Project Reactor Flux supports several
types of backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform publisher(s) how much
data they can consume

• Non-backpressure-aware Subscriber(s)
can apply an overflow strategy if they
can’t keep up with faster Publisher(s)

Overview of Backpressure in Project Reactor Flux

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

14

• Project Reactor Flux supports several
types of backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform publisher(s) how much
data they can consume

• Non-backpressure-aware Subscriber(s)
can apply an overflow strategy if they
can’t keep up with faster Publisher(s)
• i.e., non-flow-controlled Publisher(s)

Overview of Backpressure in Project Reactor Flux

15

Overview of Flux Over
flow Strategies

16

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html

17

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

All values are buffered so that
subscriber can receive all values

18

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Drop the most recent onNext()
value if the downstream can’t
keep up because its too slow

19

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Throw the OverflowException
if the downstream can’t keep

up due to slowness

20

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

There is no buffering or dropping,
so Subscriber(s) must handle

overflow of they will receive an error

21

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Flux Overflow Strategies

Only key the latest onNext()
value, overwriting any previous
value if the downstream can’t
keep up because its too slow

22

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

23

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Flux
.create(makeEmitter(count,

sb),
FluxSink
.OverflowStrategy
.ERROR)

.flatMap(bf1 ->
multiplyFraction(bf1,

sBigReducedFraction,
Schedulers.parallel(),
sb))

.subscribe
(blockingSubscriber);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

24

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

Rapidly emit a stream of random
BigFraction objects in one fell swoop

Flux
.create(makeEmitter(count,

sb),
FluxSink
.OverflowStrategy
.ERROR)

.flatMap(bf1 ->
multiplyFraction(bf1,

sBigReducedFraction,
Schedulers.parallel(),
sb))

.subscribe
(blockingSubscriber);

25

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

Overview of Flux Overflow Strategies

Throw exception when events
can’t be processed immediately

Flux
.create(makeEmitter(count,

sb),
FluxSink
.OverflowStrategy
.ERROR)

.flatMap(bf1 ->
multiplyFraction(bf1,

sBigReducedFraction,
Schedulers.parallel(),
sb))

.subscribe
(blockingSubscriber);

26

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator
• Specify the overflow mode to

apply if Subscriber can’t keep
up with Publisher

• This operator is different than the
one param version of Flux.create()

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

This Flux.create() operator
does not support backpressure

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

27

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators

Overview of Flux Overflow Strategies

See projectreactor.io/docs/core/release/reference/#which.errors

https://projectreactor.io/docs/core/release/reference/

28

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureDrop()
• Ignore all streamed items that

can’t be processed until down
stream can accept more of them

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureDrop

component
.mouseMoves()
.onBackpressureDrop()
.publishOn

(Schedulers.parallel(),
1)

.subscribe(event ->
compute(event.x,

event.y));

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

29

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureLatest()
• Like the DROP strategy, but it

keeps the last emitted item

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureLatest

component
.mouseClicks()
.onBackpressureLatest()
.publishOn

(Schedulers.parallel())
.subscribe(event ->

compute(event.x,
event.y),

Throwable::
printStackTrace);

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

30

• Flux overflow strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the two param version of the
Flux.create() operator

• They can also be provided via other
Flux onBackpressure*() operators
• onBackpressureBuffer()
• Creates a bounded or unbounded

buffer to hold emitted items that
can’t be processed by downstream

Overview of Flux Overflow Strategies

See Flux.html#onBackpressureBuffer

Flux
.range(1, 1_000_000)
.onBackpressureBuffer

(16,
BufferOverflowStrategy
.DROP_OLDEST)

.publishOn
(Schedulers.parallel())

.subscribe(e -> { },
Throwable::
printStackTrace);

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

31

End of Overview of
Backpressure Models in

Project Reactor Flux

