
Overview of RSocket Interaction Models

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the RSocket framework
• Recognize the RSocket interaction models

3

Learning Objectives in this Part of the Lesson
• Understand the RSocket framework
• Recognize the RSocket interaction

models
• As well as backpressure support

4

Overview of RSocket
Interaction Modes

5

Overview of RSocket Interaction Models
• RSocket provides four interaction

models

See projectreactor.io

https://projectreactor.io/

6

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Fire-and-Forget
• Each one-way message

receives no response
from the server

See spring.io/blog/2020/03/16/getting-started-with-rsocket-spring-boot-fire-and-forget

https://spring.io/blog/2020/03/16/getting-started-with-rsocket-spring-boot-fire-and-forget

7

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Fire-and-Forget
• Each one-way message

receives no response
from the server

• This optimization is useful
when a response is not
needed

Mono<Void> completionSignal =
rsocketClientProxy
.fireAndForget(message);

Spring WebFlux (& WebMVC) don’t really support this use case

8

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Fire-and-Forget
• Each one-way message

receives no response
from the server

• This optimization is useful
when a response is not
needed
• Saves network & computer

processing time

Mono<Void> completionSignal =
rsocketClientProxy
.fireAndForget(message);

9

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Fire-and-Forget
• Each one-way message

receives no response
from the server

• This optimization is useful
when a response is not
needed

• Primarily intended for use
cases that support lossiness
• e.g., non-critical event logging

See medium.com/mandiri-engineering/fire-and-forget-e59b745c9f97

Mono<Void> completionSignal =
rsocketClientProxy
.fireAndForget(message);

https://medium.com/mandiri-engineering/fire-and-forget-e59b745c9f97

10

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Response
• Each two-way async request

receives a single async
response from the server

See spring.io/blog/2020/03/02/getting-started-with-rsocket-spring-boot-server

https://spring.io/blog/2020/03/02/getting-started-with-rsocket-spring-boot-server

11

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Response
• Each two-way async request

receives a single async
response from the server

• A very common async use case

Mono<Response> response =
rsocketClientProxy
.requestResponse

(monoRequest);

Spring WebFlux also supports this async two-way use case for HTTP requests/responses

12

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Response
• Each two-way async request

receives a single async
response from the server

• A very common async use case
• Although it looks like a typical request/

response, underneath it never blocks
synchronously

Mono<Response> response =
rsocketClientProxy
.requestResponse

(monoRequest);

13

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Stream
• Each async request receives

a stream of responses from
the server

See spring.io/blog/2020/03/23/getting-started-with-rsocket-spring-boot-request-stream

https://spring.io/blog/2020/03/23/getting-started-with-rsocket-spring-boot-request-stream

14

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Stream
• Each async request receives

a stream of responses from
the server

• Allows streaming of multiple
response messages

Flux<Response> response =
rsocketClientProxy
.requestStream

(monoRequest);

15

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Request-Stream
• Each async request receives

a stream of responses from
the server

• Allows streaming of multiple
response messages

• Instead of getting back all data
as a single response, each
element is streamed back in order

Flux<Response> response =
rsocketClientProxy
.requestStream

(monoRequest);

Spring WebFlux also supports this async use case for HTTP requests/responses

16

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Channel
• A stream of async messages

can be sent bi-directionally
between client & server

See spring.io/blog/2020/04/06/getting-started-with-rsocket-spring-boot-channels

https://spring.io/blog/2020/04/06/getting-started-with-rsocket-spring-boot-channels

17

Overview of RSocket Interaction Models
• RSocket provides four interaction

models
• Channel
• A stream of async messages

can be sent bi-directionally
between client & server

• A data stream from client-to-
server coexists alongside a data
stream from server-to-client

Flux<Response> output =
rsocketClientProxy
.requestChannel
(fluxRequest);

Spring WebFlux also supports this async use case for HTTP requests/responses

18

Overview of RSocket
Backpressure Support

19

Overview of RSocket Backpressure Support
• For Request-Stream & Channel models backpressure signals travel between

requester & responder, allowing a requester to slow down a responder at the
source

See grapeup.com/blog/reactive-service-to-service-communication-with-rsocket-introduction

Responder Requester

https://grapeup.com/blog/reactive-service-to-service-communication-with-rsocket-introduction/

20

• For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source
• Backpressure reduces reliance

on transport layer congestion
control

See en.wikipedia.org/wiki/TCP_congestion_control

Overview of RSocket Backpressure Support

https://en.wikipedia.org/wiki/TCP_congestion_control

21

• For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source
• Backpressure reduces reliance

on transport layer congestion
control
• It also minimizes the need for

buffering at the network level
• Or at any level…

Overview of RSocket Backpressure Support

22

• For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source
• Backpressure reduces reliance

on transport layer congestion
control

• RSocket backpressure uses the
Subscriber/Subscription model

Overview of RSocket Backpressure Support

Requester Responder

See www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

https://www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

23

• For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source
• Backpressure reduces reliance

on transport layer congestion
control

• RSocket backpressure uses the
Subscriber/Subscription model
• We covered this earlier in the

context of Project Reactor

Overview of RSocket Backpressure Support

Requester Responder

See earlier lesson on ”Overview of Backpressure Models in the Project Reactor Flux”

24

• For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source
• Backpressure reduces reliance

on transport layer congestion
control

• RSocket backpressure uses the
Subscriber/Subscription model

• It also supports the concept of
“request leases”
• Inform the Requester that it may send Requests for a

period of time & how many it may send during that duration

Overview of RSocket Backpressure Support

See jauntsdn.com/post/rsocket-lease-concurrency-limiting

https://jauntsdn.com/post/rsocket-lease-concurrency-limiting

25

• The Java RSocket implementation
is built upon Project Reactor &
Reactor Netty for the transport

See projectreactor.io & www.baeldung.com/spring-boot-reactor-netty

Overview of RSocket Backpressure Support

https://projectreactor.io/
http://www.baeldung.com/spring-boot-reactor-netty

26

• The Java RSocket implementation
is built upon Project Reactor &
Reactor Netty for the transport
• Signals from reactive streams

publishers therefore propagate
transparently through RSocket
across the network

See projectreactor.io & www.baeldung.com/spring-boot-reactor-netty

Overview of RSocket Backpressure Support

https://projectreactor.io/
http://www.baeldung.com/spring-boot-reactor-netty

27

End of Overview of
RSocket Interaction Models

