Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize the RSocket interaction models

—_—

4+ - =

= o= =P
4+~ - =

Fire & Forget

Request - Response

Request-Stream

Channel

Learning Objectives in this Part of the Lesson

Requester Responder
« Recognize the RSocket interaction | | .
models e
» As well as backpressure support 3 et

Responder needs
to wait for new
request-n frame

aaaaaaa (1]
ppppppp 2
aaaaaaa (&3]
uuuuuuu 7]
uuuuuuu (s

Overview of RSocket
Interaction Modes

Overview of RSocket Interaction Models

« RSocket provides four interaction
models

T T ()¢
% i
’ .

1

nmet L,
. ,.’o"".

ST — ‘
.u b ._..‘. .
.

‘ v,

= o= =P
4+ - =

Fire & Forget

Request - Response

Request-Stream

Channel

See projectreactor.io

https://projectreactor.io/

Overview of RSocket Interaction Models

« RSocket provides four interaction —— —
mOdeI S Request Mono
* Fire-and-Forget e @ " server
« Each one-way message
receives no response
— -~ J

from the server

See spring.io/blog/2020/03/16/getting-started-with-rsocket-spring-boot-fire-and-forget

https://spring.io/blog/2020/03/16/getting-started-with-rsocket-spring-boot-fire-and-forget

Overview of RSocket Interaction Models

» RSocket provides four interaction Mono<Void> completionSignal =
models rsocketClientProxy

. .fireAndForget (message) ;
* Fire-and-Forget get(ge)

 This optimization is useful
when a response is not
needed

Spring WebFlux (& WebMVC) don't really support this use case

Overview of RSocket Interaction Models

» RSocket provides four interaction Mono<Void> completionSignal =
models rsocketClientProxy

. .fireAndForget (message) ;
* Fire-and-Forget get(ge)

 This optimization is useful \O/ C\
when a response is not >
needed \

« Saves network & computer
processing time

Overview of RSocket Interaction Models

» RSocket provides four interaction Mono<Void> completionSignal =
rsocketClientProxy

models
. .fireAndForget (message) ;
* Fire-and-Forget get ge)

« Primarily intended for use
cases that support lossiness

e e.g., hon-critical event logging

See medium.com/mandiri-engineering/fire-and-forget-e59b745c9f97

https://medium.com/mandiri-engineering/fire-and-forget-e59b745c9f97

Overview of RSocket Interaction Models

« RSocket provides four interaction — Request Mono —
models @ >
- Request-Response Client Server
« Each two-way async request A
receives a single async < &
— ———
response from the server Response Mono

See spring.io/blog/2020/03/02/getting-started-with-rsocket-spring-boot-server

https://spring.io/blog/2020/03/02/getting-started-with-rsocket-spring-boot-server

Overview of RSocket Interaction Models

» RSocket provides four interaction Mono<Response> response =
models rsocketClientProxy
- Request-Response . requestResponse
(monoRequest) ;

« A very common async use case

Spring WebFlux also supports this async two-way use case for HTTP requests/responses

Overview of RSocket Interaction Models

» RSocket provides four interaction Mono<Response> response =
models rsocketClientProxy
- Request-Response .requestResponse
(monoRequest) ;

 Although it looks like a typical request/
response, underneath it never blocks
synchronously

12

Overview of RSocket Interaction Models

« RSocket provides four interaction — Request Mono —
models @ q
- Request-Stream Client e
« Each async request receives
a stream of responses from G Q O G 0 |
-~ —

th e Se rve r Response Flux

See spring.io/blog/2020/03/23/getting-started-with-rsocket-spring-boot-request-stream

https://spring.io/blog/2020/03/23/getting-started-with-rsocket-spring-boot-request-stream

Overview of RSocket Interaction Models

» RSocket provides four interaction Flux<Response> response =
models rsocketClientProxy
.requestStream

- Request-Stream (monoRequest) ;

 Allows streaming of multiple
response messages

14

Overview of RSocket Interaction Models

» RSocket provides four interaction Flux<Response> response =
models rsocketClientProxy
- Request-Stream -requestStream
(monoRequest) ;

« Instead of getting back all data
as a single response, each
element is streamed back in order

Spring WebFlux also supports this async use case for HTTP requests/responses

Overview of RSocket Interaction Models

« RSocket provides four interaction —
models

« Channel Client
« A stream of async messages

Request Flux

can be sent bi-directionally
between client & server

—EO-0-OEO®—

Response Flux

Server

See spring.io/blog/2020/04/06/getting-started-with-rsocket-spring-boot-channels

https://spring.io/blog/2020/04/06/getting-started-with-rsocket-spring-boot-channels

Overview of RSocket Interaction Models

» RSocket provides four interaction Flux<Response> output =
models rsocketClientProxy
.requestChannel
Channel (fluxRequest) ;

A data stream from client-to-
server coexists alongside a data
stream from server-to-client

Spring WebFlux also supports this async use case for HTTP requests/responses

Overview of RSocket
Backpressure Support

18

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source

Backpressure Backpressure

Responder Congestion Requester

Data Flow

See grapeup.com/blog/reactive-service-to-service-communication-with-rsocket-introduction

https://grapeup.com/blog/reactive-service-to-service-communication-with-rsocket-introduction/

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source

- Backpressure reduces reliance .
on transport layer congestion O [;
control T '

| 1
+ Congestion 1
| Avoidance |
phase

MSS ’ Slow start
phase

Y

Time —>

See en.wikipedia.org/wiki/TCP congestion control

https://en.wikipedia.org/wiki/TCP_congestion_control

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source

« Backpressure reduces reliance
on transport layer congestion
control

It also minimizes the need for
buffering at the network level

« Or at any level...

21

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the

source Requester Responder
. i
 RSocket backpressure uses the : =
Subscriber/Subscription model SR a0 Ml

to wait for new
request-n frame
request_n [5])

payload [1]

A

paylead [2]

paylead [3]

payload [4]

poyload [5]

<
+

See www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

https://www.appsdeveloperblog.com/implementing-backpressure-in-project-reactor

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the

source Requester Responder
- RSocket backpressure uses the ; TR
Subscriber/Subscription model R TR Ml
' to wait for new

« We covered this earlier in the Byt | request-n frame
context of Project Reactor] g

payload [1]

payload [2]

paylead [2]

payload [4]

poyload [5]

See earlier lesson on “Overview of Backpressure Models in the Project Reactor Flux’

Overview of RSocket Backpressure Support

» For Request-Stream & Channel models backpressure signals travel between
requester & responder, allowing a requester to slow down a responder at the
source

Lease Agreement
« It also supports the concept of

“request leases”

« Inform the Requester that it may send Requests for a
period of time & how many it may send during that duration

See jauntsdn.com/post/rsocket-lease-concurrency-limiting

https://jauntsdn.com/post/rsocket-lease-concurrency-limiting

Overview of RSocket Backpressure Support

« The Java RSocket implementation

is built upon Project Reactor &
Reactor Netty for the transport

See

projectreactor.io & www.baeldung.com/s

Jring-boot-reactor-nettv

https://projectreactor.io/
http://www.baeldung.com/spring-boot-reactor-netty

Overview of RSocket Backpressure Support

The Java RSocket implementation ez <. ——
: : _ A < 5
is built upon Project Reactor & S

Reactor Netty for the transport

m PAYLOAD PAYLOAD PAYLOAD
« Signals from reactive streams & —--l

publishers therefore propagate

transparently through RSocket — @==s —
across the network —

Nl

R o0 B eonn
= B e

See projectreactor.io & www.baeldung.com/spring-boot-reactor-netty

https://projectreactor.io/
http://www.baeldung.com/spring-boot-reactor-netty

End of Overview of
RSocket Interaction Models

27

