
Overview of RSocket

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the motivation for &

features of the RSocket framework 

See rsocket.io

https://rsocket.io/


3

Learning Objectives in this Part of the Lesson
• Understand the motivation for &

features of the RSocket framework 
• It provides reactive streams

semantics to pass messages
across host/process boundaries



4

Learning Objectives in this Part of the Lesson
• Understand the motivation for &

features of the RSocket framework 
• It provides reactive streams

semantics to pass messages
across host/process boundaries

• It also supports application-level
binary protocols

See en.wikipedia.org/wiki/Communication_protocol#Binary

https://en.wikipedia.org/wiki/Communication_protocol


5

Motivation for RSocket



6

Motivation for RSocket
• Thus far our focus has been on using Spring endpoint handler methods to 

send/receive synchronous & asynchronous requests/responses via HTTP

See github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex3

QuoteDriver

(A)synchronous
HTTP GET/POST 

requests/
responses

ZippyApplication

Zippy
Controller

Zippy
Service

https://github.com/douglascraigschmidt/LiveLessons/tree/master/WebFlux/ex3


7

Motivation for RSocket
• Although two-way invocations to/from RESTful APIs is a popular approach, 

there are several limitations

RESTful API Model



8

Motivation for RSocket
• Although two-way invocations to/from RESTful APIs is a popular approach, 

there are several limitations
• Request-response only
• Does not support bidirectional 

communication or other 
interaction models

CLIENT SERVER

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3

findFlights1

findFlights2

findFlights3

return List1

return List2

return List3



9

Motivation for RSocket
• Although two-way invocations to/from RESTful APIs is a popular approach, 

there are several limitations
• Request-response only
• Higher overhead & less 

efficient resource usage

See blog.devgenius.io/serialization-performance-in-net-json-bson-protobuf-avro-a25e8207d9de

https://blog.devgenius.io/serialization-performance-in-net-json-bson-protobuf-avro-a25e8207d9de


10

Motivation for RSocket
• Although two-way invocations to/from RESTful APIs is a popular approach, 

there are several limitations
• Request-response only
• Higher overhead & less 

efficient resource usage
• No built-in support for 

resumable streams
• If a connection is lost, the 

client can resume the stream 
from the point where it was 
interrupted, without losing data



11

Overview of RSocket



12

Overview of RSocket
• RSocket is reactive point-to-point

messaging framework designed
to overcome RESTful limitations

See rsocket.io/about/motivations

https://rsocket.io/about/motivations


13

Overview of RSocket
• RSocket is reactive point-to-point

messaging framework designed
to overcome RESTful limitations
• It supports client/server programs

that interact via Flux & Mono 
reactive types in Project Reactor 

See projectreactor.io

Server Client

These interactions 
occur asynchronously

https://projectreactor.io/


14

Overview of RSocket
• RSocket is reactive point-to-point

messaging framework designed
to overcome RESTful limitations
• It supports client/server programs

that interact via Flux & Mono 
reactive types in Project Reactor 

• It can be configured to use various
application-level binary protocols

See en.wikipedia.org/wiki/CBOR & avro.apache.org/docs

https://en.wikipedia.org/wiki/CBOR
https://avro.apache.org/docs


15

Overview of RSocket
• RSocket is reactive point-to-point

messaging framework designed
to overcome RESTful limitations
• It supports client/server programs

that interact via Flux & Mono 
reactive types in Project Reactor 

• It can be configured to use various
application-level binary protocols
• These may be more efficient than 

other popular application-level 
protocols



16

Overview of RSocket
• RSocket is reactive point-to-point

messaging framework designed
to overcome RESTful limitations
• It supports client/server programs

that interact via Flux & Mono 
reactive types in Project Reactor 

• It can be configured to use various
application-level binary protocols
• These may be more efficient than 

other popular application-level 
protocols
• e.g., HTTP using non-binary encodings like XML & JSon

See nexocode.com/blog/posts/rsocket-why

https://nexocode.com/blog/posts/rsocket-why/


17

Overview of RSocket
• RSocket messages contain 

metadata & data

See docs.spring.io/spring-framework/docs/5.3.5/reference/pdf/rsocket.pdf

https://docs.spring.io/spring-framework/docs/5.3.5/reference/pdf/rsocket.pdf


18

Overview of RSocket
• RSocket messages contain 

metadata & data
• Metadata can select the 

route of a message



19

Overview of RSocket
• RSocket messages contain 

metadata & data
• Metadata can select the 

route of a message
• e.g., an endpoint specified 

via the @MessageMapping
annotation in Spring

See springframework/messaging/handler/annotation/MessageMapping.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/messaging/handler/annotation/MessageMapping.html


20

Overview of RSocket
• RSocket messages contain 

metadata & data
• Metadata can select the 

route of a message
• Data contains the message 

payload



21

Overview of RSocket
• RSocket messages contain 

metadata & data
• Metadata can select the 

route of a message
• Data contains the message 

payload
• e.g., specified via Mono or 

Flux reactive types

See spring.io/blog/2016/04/19/understanding-reactive-types

Mono

Flux

https://spring.io/blog/2016/04/19/understanding-reactive-types


22

End of Overview 
of RSocket


