TaskPerThreadExecutor

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

try (var executor = Executors
.newVirtualThreadPerTaskExecutor () ) {

IntStream
.range (0, 1 000 _000)

« Recognize the classes used
to program Java’s structure

concurrency model, e.g. .forEach (i -> executor

 ThreadPerTaskExecutor .submit (() -> {
Thread.sleep (Duration

.0fSeconds (1)) ;
return 1i;

})):




Programming with Java
ThreadPerTaskExecutor




Programming with Java ThreadPerTaskExecutor

« This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

static ExecutorService newVirtualThreadPerTaskExecutor()

Preview.

Creates an Executor that starts a new virtual Thread for each task.

static ExecutorService newWorkStealingPool()

Creates a work-stealing thread pool using the number of available
processors as its target parallelism level.

public interface ExecutorService
extends Executor, AutoCloseable

An Executor that provides methods to
manage termination and methods that can
produce a Future for tracking progress of
one or more asynchronous tasks.

See docs.orade.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java T

nreadPerTaskExecutor

This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

» The newThreadPerTaskExecutor()
factory method starts a new
Thread for each task

» The type of the Thread can be
designated via a ThreadFactory

newThreadPerTaskExecutor

public static ExecutorService newThreadPerTaskExecutor
(ThreadFactory threadFactory)

e A
newThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or

upgraded to permanent features of the Java platform.
N J

Creates an Executor that starts a new Thread for each task. The
number of threads created by the Executor is unbounded.

Invoking cancel(true) on a Future representing the pending
result of a task submitted to the Executor will interrupt the
thread executing the task.

Parameters:
threadFactory - the factory to use when creating new threads

Returns:

a new executor that creates a new Thread for each task

See java/util/concurrent/Executors.html#newThreadPerTaskExecutor



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java ThreadPerTaskExecutor

« This feature adds two new
factory methods in the Java
Executors utility class &
extends the ExecutorService
interface

 The newVirtualThreadPerTask
Executor() starts a new Java
virtual Thread for each task

newVirtualThreadPerTaskExecutor

public
static ExecutorService newVirtualThreadPerTaskExecutor()

P
newVirtualThreadPerTaskExecutor is a preview API of the Java
platform.

Programs can only use newVirtualThreadPerTaskExecutor when
preview features are enabled.
Preview features may be removed in a future release, or upgraded

to permanent features of the Java platform.
&

N

Creates an Executor that starts a new virtual Thread for each task.
The number of threads created by the Executor is unbounded.

This method is equivalent to invoking
newThreadPerTaskExecutor(ThreadFactory) EVEEW with a thread
factory that creates virtual threads.

Returns:
a new executor that creates a new virtual Thread for each task

Throws:

UnsupportedOperationException - if preview features are not
enabled

See java/util/concurrent/Executors.html#newVirtual ThreadPerTaskExecutor()



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 000 000)
.forEach (1 -> executor
.submit(() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;
return 1i;
1))
}

Creates an Executor that starts a
new virtual Thread for each task

See howtodoinjava.com/java/multi-threading/virtual-threads/ #43-using-executorsnewvirtualthreadpertaskexecutor



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 000 _000)

.forEach (i -> executor
.submit(() -> {
Thread.sleep (Duration

Generate 10 million iterations .ofSeconds (1)) ;

return i;

}));




Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit (() -> {

Thread.sleep (Duration
Submit 10 million tasks, each of which .ofSeconds (1)) ;

Is executed via a Java virtual Thread return i;
1))

}




Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit (() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;
return 1i;

}));

All these submitted virtual threads must
complete by the end of the enclosing scope

10



Programming with Java ThreadPerTaskExecutor

 These Executors are used
with the Java try-with-
resources feature

* This mechanism is simple,
but also limited

try (var executor = Executors

.newVirtualThreadPerTaskExecutor () ) {
IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit(() -> {
Thread.sleep (Duration

.0ofSeconds (1)) ;
return 1i;

11



Programming with Java ThreadPerTaskExecutor

 These Executors are used try (var executor = Executors
with the Java try-with- .newVirtualThreadPerTaskExecutor () ) {
resources feature IntStream

.range (0, 10 _000_000)
.forEach (i -> executor
.submit(() -> {

* This mechanism is simple,
but also limited

e It lacks support for fine- Thread.sleep (Duration
grained exception handling, _ .ofSeconds (1)) ;
“invoke any” semantics, & return 1;

automatic task cancellation

12



Programming with Java ThreadPerTaskExecutor

 These Executors are used @Bean (APPLICATION TASK
with the Java try-with- EXECUTOR BEAN NAME) public
resources feature AsyncTaskExecutor asyncTaskExecutor () {
: : L return new TaskExecutorAdapter
* This mechanism is simple,

(Executors
.newVirtualThreadPerTaskExecutor()) ;
| /
This Bean configures the Spring WebMVC

platform so it will create a Java virtual
thread to process each client request

but also limited

 However, it can serve as a
“drop-in” replacement for
common ExecutorService
use-cases

See spring.io/blog/2022/10/11/embracing-virtual-threads



https://spring.io/blog/2022/10/11/embracing-virtual-threads

Programming with Java ThreadPerTaskExecutor

« These Executors are used try (var scope = new
with the Java try-with- StructuredTaskScope
resources feature .ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser())
Future<Integer> order = scope

« These limitations motivate .fork(() -> fetchOrder())
the need for the new Java o
StructuredTaskScope scope.join();

scope. throwIfFailed() ;

return new Response
(user.resultNow(),
order.resultNow()) ;

}

See upcoming lesson on " Programming with Java StructurediaskScope’




End of Programming with
Java TaskPerThreadExecutor

15



