
Android IPC Mechanism

Jim Huang (黃敬群)

Developer, 0xlab
jserv@0xlab.org

March 19, 2012 / 南台科大

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2012 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and
translations are welcome!

Latest update: Mar 21, 2012

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Agenda (0) IPC: The heart of Android

(1) Design Patterns

(2) Binder IPC Internals

(3) Use case: Graphics

Binder IPC: The heart of Android

Process AProcess A Process BProcess B

Task ActivityActivity ActivityActivity

.apk package

.apk package

Content
Provider
Content
ProviderActivityActivity

ServiceService

5

Android Tasks

• Different component types
– Activity

– Service

– Content Provider

– Broadcast Receiver

Component View

Application Components System

Activity
Manager

Window
Manager

Alarm
Manager

Activity

Kernel

IPC = Inter-Process Communication

Why IPC?

• Each process has its own address space
• Provides data isolation
• Prevents harmful direct interaction between two

different processes
– Sometimes, communication between processes is

required for modularization

10

IPC Mechanisms

• In GNU/Linux
– Signal
– Pipe
– Socket
– Semaphore
– Message queue
– Shared memory

• In Android
– Binder: lightweight RPC (Remote Procedure

Communication) mechanism

• Developed under the name OpenBinder by Palm Inc.
under the leadership of Dianne Hackborn

• Android Binder is the customized re-implementation
of OpenBinder, which provides bindings to functions
and data from one execution environment to another

Binder History

12

Background Problems

• Applications and Services may run in separate
processes but must communicate and share data

• IPC can introduce significant processing overhead
andsecurity holes

Binder: Android's Solution

• Driver to facilitate inter-process communication
• High performance through shared memory
• Per-process thread pool for processing requests
• Reference counting, and mapping of object

references across processes
• Synchronous calls between processes
“In the Android platform, the binder is used for
nearly everything that happens across processes
in the core platform. " – Dianne Hackborn
https://lkml.org/lkml/2009/6/25/3

Binder

AIDL

Intent
More abstract

IPC Abstraction

• Intent
– The highest level abstraction

• Inter process method invocation
– AIDL: Android Interface

Definition Language

• binder: kernel driver
• ashmem: shared memory

caller

callee

In the same process

Method invocation

caller

callee

callee

caller

interface

interface

interface

How?

Inter-process method invocation

caller

callee

Binder in kernel

callee

caller

Proxy

Binder Thread

Stub

interface

interface

interface

Inter-process method invocation

Design Patterns

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

Pattern

• Abstracts and names a recurring
design structure

• Comprises class and/or object
– Dependencies

– Structures

– Interactions

– Conventions

• Specifies the design structure
explicitly

• is distilled from actual design
experience

• Android itself follows object oriented
design

Design Patterns used in Binder
(incomplete)

• Proxy Pattern
• Mediator Pattern
• Bridge Pattern

21

Proxy Pattern

• The proxy could interface to anything: a network
connection, a large object in memory, a file, or some
other resource that is expensive or impossible to
duplicate.

22

Proxy Pattern in Android
• Binder decomposes the method call and all its corresponding data to

a level that Linux can understand, transmitting it from the local
process and address space to the remote process and address
space, and reassembling and reenacting the call there.

23

Mediator Pattern

• With the mediator pattern, communication between
objects is encapsulated with a mediator object.

24

Bridge Pattern

• decouple an abstraction from its implementation so
that the two can vary independently

25

Bridge patterns in linking
Java and C++

Mediator pattern

Bridge and Mediator Pattern in Android

<<interface>>

Proxy Stub

implements

UML Representation

<<interface>>

Proxy Stub

caller

callee

calls

implements

extends

UML Representation

<<interface>>

Proxy Stub

caller

callee

Auto generated from .aidl file

AIDL

Activity
Manager

Kernel

Binder
 Thread #1

Main
 Thread

Looper
OnPause() is

called in main thread

Call ”schedulePauseActivity”
across process

Send message
by Handler Activity

Use Case:
Who calls onPause() in Activity?

3

2

1

queue

IPC Interaction in Android
(Application View)

Framework

 getService1 call interface2

3 parts:
• BnXXX: native
• BpXXX: proxy
• Client

Invoke BpXXX

Binder in Action

Process BProcess A

Binder Internals

• Binder
• Binder Object

– an instance of a class that implements the Binder interface.

– One Binder object can implement multiple Binders

• Binder Protocol
• IBinder Interface

– is a well-defined set of methods, properties and events that
a Binder can implement.

• Binder Token
– A numeric value that uniquely identifies a Binder

Binder Terminology

• Simple inter process messaging system
• Managing
• Identifying
• Calls
• Notification
• Binder as a security access token

Facilities

• Binder framework provides more than a simple
interprocess messaging system.

• Methods on remote objects can be called as if they
where local object methods.

Communication protocol

If one process sends data to another process, it is called transaction.
The data is called transaction data.

• Special Binder node with known Binder address
• Client does not know the address of remote Binder

– only Binder interface knows its own address

• Binder submits a name and its Binder token to SM
– Client retrieves Binder address with service name from

SM

Service Manager (SM)

Get Service list from SM
$ adb shell service list

Found 71 services:

0 stub_isms: [com.android.internal.telephony.ISms]

1 stub_phone: [com.android.internal.telephony.ITelephony]

2 stub_iphonesubinfo:

 [com.android.internal.telephony.IPhoneSubInfo]

..

5 stub_telephony.registry:

 [com.android.internal.telephony.ITelephonyRegistry]

...

7 stub_activity: [android.app.IActivityManager]

...

9 phone: [com.android.internal.telephony.ITelephony]

…
56 activity: [android.app.IActivityManager]

...

64 SurfaceFlinger: [android.ui.ISurfaceComposer]

...

Call remote method in ActivityManager

public abstract interface IBinder {
 ...
 field public static final int INTERFACE_TRANSACTION
 = 1598968902; // 0x5f4e5446
 …
} Source: frameworks/base/api/current.txt

$ adb shell service list

...

56 activity: [android.app.IActivityManager]

...

$ adb service call activity 1598968902
Result: Parcel(

 0x00000000: 0000001c 006e0061 00720064 0069006f '....a.n.d.r.o.i.'

 0x00000010: 002e0064 00700061 002e0070 00410049 'd...a.p.p...I.A.'

 0x00000020: 00740063 00760069 00740069 004d0079 'c.t.i.v.i.t.y.M.'

 0x00000030: 006e0061 00670061 00720065 00000000 'a.n.a.g.e.r.....')

Interact with Android Service

$ adb shell service list

Found 71 services:

...

9 phone: [com.android.internal.telephony.ITelephony]

$ adb shell service list

Found 71 services:

...

9 phone: [com.android.internal.telephony.ITelephony]

service call SERVICE CODE [i32 INT | s16 STR] …

Options:

 i32: Write the integer INT into the send parcel.

 s16: Write the UTF-16 string STR into the send parcel.

service call SERVICE CODE [i32 INT | s16 STR] …

Options:

 i32: Write the integer INT into the send parcel.

 s16: Write the UTF-16 string STR into the send parcel.

Phone Application appears in foreground.
parameter “1” → dial()
s16 "123" → String("123")

interface ITelephony {
 /* Dial a number. This doesn't place the call. It displays
 * the Dialer screen. */
 void dial(String number);

Source: frameworks/base/
telephony/java/com/android/internal/telephony/ITelephony.aidl

$ adb service call phone 1 s16 "123"

Result: Parcel(00000000 '....')

Implementation Layers of Binder

Implemented in C

Implemented in C++

Implemented in Java

• AIDL (Android Interface Definition
Language)
– Ease the implementation of

Android remote services
– Defines an interface with method

of remote services
– AIDL parser generates Java class

• Proxy class for Client
• Stub class for Service

• Java API Wrapper
Introduce facilities to the binder

– Wraps the middleware layer

API Layer

43

AIDL

• Data Types
– Java Primitives
– Containers

• String, List, Map, CharSequence
• List<>
• Multidimensional Array

– Parcelable
– Interface Reference

• Direction - in, out, inout

• oneway

– android.os.IBinder.FLAG_ONEWAY

44

AIDL Compiler
• Full-fledged Java(-only) Support
• Stub and Proxy Generator

// Interface

interface IRemoteService {

 void ping();

}

public class RemoteService extends Service {
 public IBinder onBind(Intent intent) { return mBinder; }
 private final IRemoteService.Stub mBinder =
 new IRemoteService.Stub() {
 public void ping() { // Nothing }
 };
}

IRemoteService mService =
 IRemoteService.Stub.asInterface(service);

Server

Client

• Simple inter process messaging system
• In an object oriented view, the transaction data is

called parcel.
• The procedure of building a parcel is called

marshalling an object.
• The procedure of rebuilding a object from a parcel is

called unmarshalling an object.

Parcels and Marshalling

47

Parcel

• Marshalling – The transferring of data across
process boundaries
– Represented in native binary encoding

• Mostly handled by AIDL-generated code
• Extensible – Parcelable

”flatten” ”unflatten”

transmit

Delivering arguments of method

android.os.Parcel

Parcel Definition
• Container for a message (data and object references) that

can be sent through an IBinder.

• A Parcel can contain both
flattened data that will be
unflattened on the other side of
the IPC (using the various
methods here for writing specific
types, or the general Parcelable
interface), and references to live
IBinder objects that will result in
the other side receiving a proxy
IBinder connected with the
original IBinder in the Parcel.

Representation of Parcel

• Parcel is not for general-purpose serialization
– This class (and the corresponding Parcelable API

for placing arbitrary objects into a Parcel) is
designed as a high-performance IPC transport.

– Not appropriate to place any Parcel data into
persistent storage

• Functions for writing/reading primitive data types:
– writeByte(byte) / readByte()

– writeDouble(double) / readDouble()

– writeFloat(float) / readFloat()

– writeInt(int) / readInt()

– writeLong(long) / readLong()

– writeString(String) / readString()

Parcelable

• The Parcelable protocol provides an extremely
efficient (but low-level) protocol for objects to write
and read themselves from Parcels.

• Use the direct methods to write/read
– writeParcelable(Parcelable, int)

readParcelable(ClassLoader)

– writeParcelableArray(T[],int)

readParcelableArray(ClassLoader)

• These methods write both the class type and its data
to the Parcel, allowing that class to be reconstructed
from the appropriate class loader when later reading.

52

Bundles

• A special type-safe container, called Bundle, is
available for key/value maps of heterogeneous
values.

• This has many optimizations for improved
performance when reading and writing data, and its
type-safe API avoids difficult to debug type errors
when finally marshalling the data contents into a
Parcel.

• Implements the user space facilities
of the Binder framework in C++

• Implements structures and methods
to spawn and manage new threads

• Marshalling and unmarshalling of
specific data

• Provides interaction with the Binder
kernel driver

Middleware Layer

• frameworks/base/include/binder/IServiceManager.h
sp<IServiceManager> defaultServiceManager()

• frameworks/base/include/binder/IInterface.h
template BpInterface

55

Kernel Driver Layer
• Binder Driver supports the file

operations open, mmap, release, poll
and the system call ioctl

• ioctl arguments
– Binder driver command code
– Data buffer

• Command codes
– BINDER_WRITE_READ
– BINDER_SET_MAX_THREADS
– BINDER_SET_CONTEXT_MGR
– BINDER_THREAD_EXIT
– BINDER_VERSION

• Multi-thread aware
– Have internal status per thead
– Compare to UNIX socket: sockets have internal

status per file descriptor (FD)

Binder Driver

Binder Driver

• A pool of threads is associated to each service application to process
incoming IPC

• Binder performs mapping of object between two processes.
• Binder uses an object reference as an address in a process’s

memory space.
• Synchronous call, reference counting

socket binder
internal status associated to FD associated to PID

(FD can be shared among
threads in the same
process)

read & write
operation

stream I/O done at once by
ioctl

network
transparency

Yes No
expected local only

Binder is different from UNIX socket

Binder$ adb cat /sys/devices/virtual/misc/binder/uevent
MAJOR=10
MINOR=47
DEVNAME=binder

ClientClient
ServerServer

Service ManagerService Manager

Binder Driver: /dev/binderBinder Driver: /dev/binder

Kernel Space

User Space

Handle=0

Name:Handle
Name:Handle
Name:Handle

service list
IXXX

onTransact(…)

thread pool

memory mapping

transact(…)

60

from SM to Binder Driver

1

2

3 4 5

if (ioctl(fd, BINDER_WRITE_READ, &bwt) >= 0)
 err = NO_ERROR;
else
 err = -errno;

write buffer

read buffer

write_size

write_consumed

write_buffer

read_size

read_consumed

read_buffer

binder_write_read

Transaction
BR → BinderDriverReturnProtocol
BC → BinderDriverCommandProtocol

Process A

Process B

Binder

Process A

Binder

Process B

Copy memory by copy_from _user

Copy memory by copy_to_user

Then, wake up process B

Process A and B have different memory space.
They can not see each other.

Kernel

Kernel

Transaction of Binder

Internally, Android uses Binder for graphics data transaction across processes.
It is fairly efficient.

63

Limitation of Binder IPC

• Binders are used to to communicate over process
boundaries since different processes don't share a
common VM context
– no more direct access to each others Objects

(memory).

• Binders are not ideal for transferring large data
streams (like audio/video) since every object has to
be converted to (and back from) a Parcel.

64

Binder Performance

• Good
– Compact method index
– Native binary marshalling
– Support of ashmem shortcut
– No GUID

• Bad
– Dalvik Parcel overhead
– ioctl() path is not optimal
– Interface name overhead
– Global lock

65

Binder Security

• Binder’s Security Features
– Securely Determined Client Identity

• Binder.getCallingUid(), Binder.getCallingPid()
• Similar to Unix Domain Socket
getsockopt(..., SO_PEERCRED, ...)

– Interface Reference Security
• Client cannot guess Interface Reference

• Service Manager
– Directory Service for System Services

• Server should check client permission
Context.checkPermission(permission, pid, uid)

Binder sample program

• Build binder benchmark program
cd system/extras/tests/binder/benchmarks

mm

adb push \

 ../../../../out/target/product/crespo/data/nativebenchmark/binderAddInts \

 /data/local/

• Execute
adb shell

su

/data/local/binderAddInts -d 5 -n 5 &

ps

...
root 17133 16754 4568 860 ffffffff 400e6284 S
/data/local/binderAddInts

root 17135 17133 2520 616 00000000 400e5cb0 R
/data/local/binderAddInts

Binder sample program

• Execute
/data/local/binderAddInts -d 5 -n 5 &

ps

...
root 17133 16754 4568 860 ffffffff 400e6284 S
/data/local/binderAddInts

root 17135 17133 2520 616 00000000 400e5cb0 R
/data/local/binderAddInts

cat /sys/kernel/debug/binder/transaction_log
transaction_log:3439847: call from 17133:17133 to 72:0 node
1 handle 0 size 124:4

transaction_log:3439850: reply from 72:72 to 17133:17133 node
0 handle 0 size 4:0

transaction_log:3439855: call from 17135:17135 to 17133:0
node 3439848 handle 1 size 8:0

...

Binder sysfs entries

• adb shell ls /sys/kernel/debug/binder
failed_transaction_log
proc
state
stats
transaction_log
transactions

Remote Procedure Call

BINDER_WRITE_READ

• Target Method
– handle : Remote Interface
– ptr & cookie : Local Interface

– code : Method ID
• Parcel - Input/Output Parameters

– data.ptr.buffer
– data_size

• Object Reference Management
– data.ptr.offsets
– offsets_size

• Security
– sender_pid
– sender_euid

• No Transaction GUID
– Transparent Recursion

Binder Transaction

Object Reference Management

• System service is executed by IServiceManager::addService() calls.
– Parameter: handle to Binder Driver

• Look up the name of specific service in Binder Driver Map
– IServiceManager::getService() returns the handle of the found registered

services

• android.os.IBinder.INTERFACE_TRANSACTION: the actual name

Service Registration and Discovery

Binder use case: Android Graphics

Binder IPC is used for communicating between Graphics client and server.
Taken from http://www.cnblogs.com/xl19862005/archive/2011/11/17/2215363.html

Real Case

Surface

Source: frameworks/base/core/java/android/view/Surface.java

• /* Handle on to a raw buffer that is being
managed by the screen compositor */
public class Surface implements Parcelable {
 public Surface() {
 mCanvas = new CompatibleCanvas();
 }
 private class CompatibleCanvas

extends Canvas { /* ... */ }
}

Surface instances can be written to and restored from a Parcel.Surface instances can be written to and restored from a Parcel.

”flatten” ”unflatten”

transmit

Delivering arguments of method

 Properties

 Can combine 2D/3D surfaces and surfaces from multiple applications

 Surfaces passed as buffers via Binder IPC calls

 Can use OpenGL ES and 2D hardware accelerator for its compositions

 Double-buffering using page-flip

Android SurfaceFlinger

Everything is
around Binder
Everything is
around Binder

Camera + SurfaceFlinger + Binder

Reference

• Inter-process communication of Android, Tetsuyuki
Kobayashi

• 淺談 Android系統進程間通信（ IPC）機制 Binder中
的 Server和 Client獲得 Service Manager接口之路
http://blog.goggb.com/?post=1580

• Android Binder – Android Interprocess
Communication, Thorsten Schreiber

• Design Patterns in the Android Framework, Prof.
Sheng-De Wang

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Android Task
	Slide 6
	Slide 7
	Slide 8
	Why IPC
	IPC (Inter-Process Communication)
	Slide 11
	Android Binder
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	A Pattern…
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Binder in Action
	Slide 32
	Binder Terminology
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Binder
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

