Threads, AsyncTasks, & Handlers

Programming the Android
Platform

Android Threading

Android implements Java

threads & concurrency Q e,)
classes

Conceptual view

Concurrent computations
running in a process
Implementation view

Each Thread has a program
counter & a stack (unique)

The heap & static areas are
shared across threads (common)

http://developer.android.com/guide/components/processes-and-threads.html

http://developer.android.com/guide/components/processes-and-threads.html

Computation Abstractions

—— [inux Processes

// //

® @ N
o e \\ Androi
olo || "l el =

- Threads

p1 P2 P3 P4

Android Mobile Device

Java Threads

e Java provides access to thread creation through the Thread class

& Runnable interface

e The Java Thread class is used to create & control a thread

e You provide an implementation of the Runnable interface that

specifies what the Thread should do

public interface Runnable { public void run(); }

public class MyRunnable implements
Runnable §
public void run(){
//[code to run goes here

}
}

MyRunnable myr = new
MyRunnable();
new Thread (myr).start();

public class MyRunnable extends
Thread §
public void run()§
//[code to run goes here

}
}

MyRunnable myr = new
MyRunnable();
myr.start();

Java Threads (cont’d)

e Java provides access to thread creation through the Thread class
& Runnable interface

e The Java Thread class is used to create & control a thread

e You provide an implementation of the Runnable interface that
specifies what the Thread should do

public class MyApplication §
public static void main(String[] args){

Thread t = new Thread(new public class MyRunnable implements

MyRunnablg(): Runnable §
t.sta?'ﬂ(\ public void run()f
[//dO other stuff } [//code for the Thread to run goes here}

}
} }
}

These two chunks of code
run concurrently >

Java Threads (cont’d)

e All threads must be
given some code to run

e You specify the code
that should be run by
implementing the
Runnable interface

e Runnables have a
“run()” method that is

called by the new
thread after it starts up

e The thread stays active until run() returns

e |f you want thread to run forever, you
need to have a while(true) statement
in that run() method

e You can run any block of code in a
separate thread, but it must be inside of
a run() method or called from a run()
method of a Runnable

public interface Runnable §

Il ...

public void run();
/] ...
}

Java Threads (cont’d)

e Starting a thread using an inner class as the Runnable

public class MyApp §
private class MyWorker implements
Runnable §
public void run() MyApp thread
{ [* your concurrent _
code here */} main new()

}

public static void main(String args[]) { start()
Thread t = new Thread(new
MyWorker());

t.start();
/| Do other stuff concurrently

}

run()

}

Java Threads (cont’d)

e Starting a thread using an anonymous inner class as the

Runnable

public class MyApp §
public static void main(String
args[]) {
new Thread(new Runnable() §
public void run(){
//[code to run in parallel
}
}).start();
// Do other stuff concurrently

}

main

MyApp

new()

thread

start()

run()

Some Java Thread Methods

void start() - starts the
Thread

void interrupt() - send an
interrupt request to calling
Thread

void sleep(long time) -
sleep for the given period
void join() - wait for a
thread to die

for (inti=o0; i <importantinfo.length; i++) {
/| Pause for 4 seconds
try { Thread.sleep(4000); }
catch (InterruptedException e) §
/| We're interrupted: no more messages.
return;
} // Print a message
System.out.printin(importantinfo[i]); }

for (inti=o0;i<inputs.length; i++) {
heavyCrunch(inputs[i]);
if (Thread.interrupted())
{// We're interrupted: no more crunching.
throw InterruptedException(); }

Stopping Java Threads

e There is no safe “stop” method for a Thread in Java

e If you are going to create a long running operation inside of your
run() method, you must ensure your code can stop!

e If you don’t want to use the interrupt() method described earlier, a
simple way to have a “stop” flag

e Add a boolean flag “running_"

to your class that implements

Runnable public class MyTask§
private boolean running_ = true;

e Initially, set “running_"

public void stop(){running_ = false; }
to true

public void run()§
e Have a stop() method that while(running_) { /* do stuff */}

sets “running_" to false }

Some Static Java Thread Methods

boolean isAlive() - returns For more info see Doug Lea’s book
true if the thread has been on Java concurrency at
started, but hasn't yet http://gee.cs.oswego.edu/dl/cpj

terminated W
Doug Lea

Thread currentThread() -

Concurrent
thread object for currently Programming in Java’
executing thread Second Edition

Design Principles and Patterns

Boolean holdsLock(Object
object) - returns true if
calling Thread holds an
intrinsic lock on object

& Sun

11

http://gee.cs.oswego.edu/dl/cpj

Basic Thread Use Case

Instantiate a Thread object
Invoke the Thread'’s start() method

Thread will invoke its own run()
Thread terminates when run() returns

Blocking

Attermpt accessing MNew

guarded resource

monitor
obtained

Waiting

lock.notify{), thread.start()

lock.notifyalll)

runi} method
completes

Runnable
lock. waitl)

Thread.sleepl)

Interrupted
Time elapsed

O

12

Java Synchronization

Problem: How do you protect critical sections of code from
being executed by two threads in parallel
What is the result of calling startMultiThreadedAccount()?

public class MyBankAccount{
private int balance_ = 1000;
private void withdrawFunds(int amount) { balance_ -=amount; }
public int getBalance(){ return balance_; }

public void startMultiThreadedAccount()§
Thread t1 = new Thread(
new Runnable(){ public void run(){ withdrawFunds(100);} });
Thread t2 = new Thread(
new Runnable(){ public void run(){ withdrawFunds(100);}});
ta.start();
t2.start();

}
}

13

Synchronization via Monitor Objects

Java provides the “synchronized” keyword to specify sections of
code that cannot be accessed concurrently by two threads

Only a single synchronized method can be active in an object
All Java objects use the Monitor pattern
withdrawFunds & getBalance can never execute concurrently:

public class MyBankAccount §
private int balance_ = 1000;

public synchronized void withdrawFunds(int amount) §
balance_ -= amount;

}

public synchronized int getBalance() { return balance_; }

}

14

Monitor Object Pattern

This pattern

synchronizes : Monitor Object
concurrent method Client |, .~

_ sync_method1()
execution to ensure sync_methodN()
that only one method ’ ’
at a time runs within uses [P uses
an object Monitor Condition Monitor Lock
It a.lso allows an wait() acquire()
object’s methods to notify() release()
cooperatively notify_all()

schedule their
execution sequences

http://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2

http://www.dre.vanderbilt.edu/~schmidt/POSA/POSA2

Monitor Object Dynamics

Threads Thread2 Object Lock Condition
sync_methodz() | acquire()
—’,
. f—_
Synchronized E— dowork()
methOd | o wait()
invocation & — >
. . . the OS thread scheduler b/ |:
Serlallzatlon - automatically suspends -
- the client thread
Synchronized sync_methodz() scquirel) e 05 throad schedu
1 e read scheduler
method thread the OS thread S — atomically releases
. scflleduli(I . dowork() the monitor lock
suspension avtomaticaily ‘_"7'
_ the client notify(
Monitor) -
oy method - — — — A | releaseQ)
condition <-— A
notification - |
Synchronized . E - L
dowork()
method thread | |_||" |
t H -’ release() the OS t§hread scheduler
resump on - Ny atomically reacquires
the monitor lock

Monitor Objects in Java

All objects in Java can be
Monitor Objects

Access to a synchronized
method is serialized w/other
synchronized methods

Java objects have wait() &
notify()/notifyAll() methods
to allow callers to wait for a
condition to become true

Calling wait() on an object
will suspend the current
thread until a corresponding
notify() call is made on the
same object

public class MessageQueue {
public synchronized void put(Msg m){...}
public synchronized Msg get(){...}

}

public class MessageQueue {
public synchronized void put(Msg m){

.n.;).tify(),-
}

public synchronized Msg get(){
while (size() == 0){ wait(); }

Monitor Objects in Java (cont’d)

What is the output of this program? How would you fix it?

public class MyBankAccount{
private List queue_ = new ArrayList();

public synchronized void publish
(String msg){

queue_.add(msg);

}

public synchronized String
consume()§

return queue_.remove(0);

}
}

public void start(){
Thread t = new Thread(new Runnable()§
public void run(){
for(inti = o; i < 10; i++) publish(“foo");
)}

Thread t2 = new Thread(new
Runnable()§

public void run()§
while(true)§
System.out.println(consume());1});
ta.start();
t2.start();

Monitor Objects in Java (cont’d)

Inside of a synchronized method,
you can request that a thread “"wait”
for a condition, e.q.:

if you have a queue, a method to get
from the queue can check the queue
size & wait() if the queue is empty

The thread calling the method blocks
on the wait() call & does not continue
execution until another thread tells it
that the queue has data to process

When the thread is notified, it wakes
up, obtains the lock for the method
again, & continues execution after the
wait() call

public class MyBankAccount§

private List queue_ = new
ArrayList();

public synchronized String
consume()§

while (queue_.size() == 0) §
wait();
}

return queue_.remove(0);

}

Monitor Objects in Java (cont’d)

When a thread is waiting on a condition,

_ public class MyBankAccount§
another thread can use notify() to wake

private List queue_ = new

up the waiting thread ArrayList();
notify() is called on the *condition* &
not the waiting thread, e.g.: public synchronized void

publish(String msg){
queue_.add(msg);
notify();

}

Thread A calls wait() on Object 1

Thread B calls notify() on Object 1 to wake up
Thread A

If Thread B calls notify() on Object 2, it would
have no affect on Thread A b/c it is waiting
on Object 1 (e.g. the condition)
When notify() is called, one thread waiting on
the notified object will *eventually* be give
the lock back for the synchronized method it
was running in & allowed to continue

notifyAll() can be
used to wake up all
waiting threads

Pros & Cons of Monitor Object Pattern

This pattern provides two benefits:
eSimplifies concurrency control
eThe Monitor Object pattern
presents a concise programming
model for sharing an object among
cooperating threads where object
synchronization corresponds to
method invocations
eSimplification of scheduling method
execution
eSynchronized methods use their
monitor conditions to determine
the circumstances under which
they should suspend or resume
their execution & that of
collaborating monitor objects

This pattern can also incur liabilities:

*The use of a single monitor lock can limit
scalability due to increased contention
when multiple threads serialize on a
monitor object

eComplicated extensibility semantics

eThese result from the coupling between
a monitor object’s functionality & its
synchronization mechanisms

e|t's hard to inherit from a monitor object
due to the inheritance anomaly problem

*Nested monitor lockout

*This problem is similar to the preceding
liability & can occur when a monitor
object is nested within another monitor
object

http://www.dre.vanderbilt.edu/~schmidt/C++2java.html

http://www.dre.vanderbilt.edu/~schmidt/C++2java.html
http://www.dre.vanderbilt.edu/~schmidt/C++2java.html
http://www.dre.vanderbilt.edu/~schmidt/C++2java.html

Simple Thread Example

public class SimpleThreadingExample extends Activity {
private Bitmap bitmap;
public void onCreate(Bundle savedInstanceState) §

final ImageView iview = ...
new Thread(new Runnable() §
public void run() {
synchronized (iview) §
bitmap = BitmapFactory
.decodeResource(getResources(),R.drawable.icon);
iview.notify();

5

}
1).start();

Thread Example (cont.)

final Button button = ...
button.setOnClickListener(new OnClickListener() §
public void onClick(View v) {
synchronized (iview) §
while (null == bitmap) {
try {
iview.wait();
} catch (InterruptedException e) {...}
}

iview.setlmageBitmap(bitmap);

}
}
});

The Looper

Android class for providing class LooperThread extends Thread §
public Handler mHandler;
message queue for threads
Threads by default do not have a public void run() {
message loop associated with Looper.prepare();
them; to create one, call prepare()
in the thread that is to run the mHandler = new Handler() {
loop, & then loop() to have it public void handleMessage
process messages until the loop is (Message msg) {
stopped /| process incoming messages here
: : : }
Most interaction with a message 1

loop is through Handlers

Looper.loop();
HandlerThread } Q e)

Handy class for starting a new }
thread that has a looper

The UlThread

Applications have a L S
main thread (the Ul S s
thread), which is a looper S

Application components ..o

In the Same process Thread / - Looper | Ul Thread
I h (main thread)

use the same main y—

t h rea d Message

User interaction,
system callbacks & lifecycle
methods handled in the

Ul thread Q e)

The Android Ul toolkit is not thread safe

Message Queue

Ul Thread Implications

Blocking the Ul thread
hurts responsiveness

Long-running ops should
run in background thread

Don't access the Ul

Threa

Threa

toolkit from non-Ul
thread

Handler

Handler

/

Ul & background threads will need to

communicate

A typical approach is to post messages to
the looper thread’s message queue

Message

Message

Message

Message Queue

Looper <

Ul Thread
(mainthread)

T TR

Posting Runnables on Ul thread

public class SimpleThreadingExample extends Activity §
private Bitmap bitmap;
public void onCreate(Bundle savedinstanceState) §

final ImageView iview = ...

final Button button = ...

button.setOnClickListener(new OnClickListener() §

public void onClick(View v) §
new Thread(new Runnable() §
public void run() {
Bitmap =...
iview.post(new Runnable() §
public void run() { iview.setlmageBitmap(bitmap);}

5);

}
}).start();

Posting Runnables on Ul thread

public class SimpleThreadingExample extends Activity §
private Bitmap bitmap;
public void onCreate(Bundle savedinstanceState) §

final ImageView iview = ...
final Button button = ...
button.setOnClickListener(new OnClickListener() §
public void onClick(View v) §
new Thread(new Runnable() §
public void run() {
Bitmap =...
SimpleThreadingExample.this
.runOnUiThread(new Runnable() §
public void run() { iview.setimageBitmap(bitmap);}

});

}
1).start();

AsyncTask

Structured way to manage work
involving background &UI threads

Simplifies creation of long-running
tasks that need to communicate with
the Ul

In background thread
Perform work

In Ul Thread

Setup
Indicate progress
Publish results

Must be subclassed

Instance must be created
on Ul thread

Instance can only be
executed once

AsyncTask (cont.)

Generic class

class AsyncTask<Params, Progress, Result> §

5

Generic type parameters
Params —Types used in background work
Progress — Types used when indicating progress
Result — Types of result

AsyncTask (cont.)

void onPreExecute()

Runs before doInBackground()
Result doInBackground (Params... params)

Performs work “in the background”

Can call void publishProgress(Progress... values)
periodically

void onProgressUpdate (Progress... values)

Invoked in response to publishProgress()

void onPostExecute (Result result)
Runs after dolnBackground()

AsyncTask (cont.)

public class SimpleThreadingExample extends Activity §
ImageView iview;

ProgressBar progress;

public void onCreate(Bundle savedinstanceState) §
i\./.iew = ...
progress = ...
final Button button = ...

button.setOnClickListener(new OnClickListener() §
public void onClick(View v) {

new LoadlconTask().execute(R.drawable.icon);

});
}

AsyncTask (cont.)

class LoadlconTask extends AsyncTask<Integer, Integer, Bitmap> {
protected Bitmap dolnBackground(Integer... resid) §

Bitmap tmp = BitmapFactory.decodeResource(

getResources(), resld[0]);

// simulate long-running operation
publishProgress(...);

return tmp;

5

protected void onProgressUpdate(Integer... values) §
progress.setProgress(values[0]);

protected void onPostExecute(Bitmap result) §
iview.setlmageBitmap(result);
}

Handler

Threads can also communicate
by exchanging Messages &
Runnables
Connects to thread’s looper
One per Thread
Manages MessageQueue > g
Dispatches MessageQueue entries
Handler

Sends Messages & Runnables to
Thread

Implements processing for
Messages . @

Thread-safe

Handler (cont.)

Two main uses for a Handler

Schedule Message/Runnable for
future execution

Enqueue action to be performed on
a different thread

Extend the Handler base class &
override the hook method
handleMessage(Message msq)

Runnables & Handlers

boolean post(Runnabler)

Add Runnable to the MessageQueue
boolean postAtTime(Runnabler, long
uptimeMillis)

Add Runnable to the MessageQueue. Run at a specific
time (based on SystemClock.upTimeMiillis())

boolean postDelayed(Runnable r, long delayMillis)

Add Runnable to the message queue. Run after the
specified amount of time elapses

Runnables & Handlers (cont.)

public class SimpleThreadingExample extends Activity §
private ImageView iview;
private Handler handler = new Handler();
public void onCreate(Bundle savedInstanceState) §

view = ...
final Button = ...
button.setOnClickListener(new OnClickListener() §
public void onClick(View v) {
new Thread(new LoadlconTask(R.drawable.icon)).start();

}
});
}

Runnables & Handlers (cont.)

private class LoadlconTask implements Runnable §
int resld;

LoadlconTask(int resld) §
this.resld = resld;

5

public void run() {
final Bitmap tmp =
BitmapFactory.decodeResource(getResources(),resld);
handler.post(new Runnable() §
public void run() {
Iiview.setimageBitmap(tmp);
}
});
}

Messages & Handlers

Create Message & set

Message content s

Handler.obtainMessage() l Handler

Message.obtain() Looper

Many variants, see documentation U ——
Message parameters include S | ------------ : m

int argz, arg2 —> [

int what |

Object obj

Bundle data :
Message.obtain() returns message object from ®

global pool to avoid allocating new objects

http://developer.android.com/reference/android/os/Handler.htm

http://developer.android.com/reference/android/os/Handler.html

Messages & Handlers (cont.)

sendMessage() - puts the Message
at the end of the queue
immediately

sendMessageAtFrontOfQueue() -
puts the Message at the front of the
queue immediately

sendMessageAtTime() — puts the
message on the queue at the stated
time

sendMessageDelayed() — puts the
message after the delay time has | :
passed D —

Messages & Handlers (cont.)

public class SimpleThreadingExample extends Activity §

Handler handler = new Handler() §
public void handleMessage(Message msq) §
switch (msg.what) {

case SET_PROGRESS _BAR_VISIBILITY: §
progress.setVisibility((Integer) msg.obj); break; }

case PROGRESS _UPDATE: §
progress.setProgress((Integer) msg.obj); break; }

case SET_BITMAP: §
iview.setlmageBitmap((Bitmap) msg.obj); break;}

Messages & Handlers (cont.)

public void onCreate(Bundle savedInstanceState) §

view = ...
progress = ...
final Button button = ...
button.setOnClickListener(new OnClickListener() §
public void onClick(View v) {
new Thread(
new LoadlconTask(R.drawable.icon, handler)).start();

b);

Messages & Handlers (cont.)

private class LoadlconTask implements Runnable §

public void run() {
Message msg = handler.obtainMessage (
SET_PROGRESS_BAR_VISIBILITY, ProgressBar.VISIBLE),
handler.sendMessage(msg);
final Bitmap tmp =
BitmapFactory.decodeResource(getResources(),resld);
for(inti=1;i<11;i++){
msg = handler.obtainMessage(PROGRESS_UPDATE, i * 10);
handler.sendMessageDelayed(msg, i * 200);

5

Messages & Handlers (cont.)

msqg = handler.obtainMessage(SET_BITMAP, tmp);
handler.sendMessageAtTime(msg, 11 * 200);
msqg = handler.obtainMessage(

SET_PROGRESS_BAR_VISIBILITY, ProgressBar.INVISIBLE);
handler.sendMessageAtTime(msg, 11 * 200);

5

Lab Assighment

	Programming the Android Platform
	Android Threading
	Computation Abstractions
	Java Threads
	Java Threads (cont’d)
	Java Threads (cont’d)
	Java Threads (cont’d)
	Java Threads (cont’d)
	Some Java Thread Methods
	Stopping Java Threads
	Some Static Java Thread Methods
	Basic Thread Use Case
	Java Synchronization
	Synchronization via Monitor Objects
	Monitor Object Pattern
	Monitor Object Dynamics
	Monitor Objects in Java
	Monitor Objects in Java (cont’d)
	Monitor Objects in Java (cont’d)
	Monitor Objects in Java (cont’d)
	Pros & Cons of Monitor Object Pattern
	Simple Thread Example
	Thread Example (cont.)
	The Looper
	The UIThread
	UI Thread Implications
	Posting Runnables on UI thread
	Posting Runnables on UI thread
	AsyncTask
	AsyncTask (cont.)
	AsyncTask (cont.)
	AsyncTask (cont.)
	AsyncTask (cont.)
	Handler
	Handler (cont.)	
	Runnables & Handlers
	Runnables & Handlers (cont.)
	Runnables & Handlers (cont.)
	Messages & Handlers
	Messages & Handlers (cont.)
	Messages & Handlers (cont.)
	Messages & Handlers (cont.)
	Messages & Handlers (cont.)
	Messages & Handlers (cont.)
	Lab Assignment

