
Services & Interprocess Communication (IPC)

CS 282
Principles of Operating Systems II

Systems Programming for Android

 A Service is an application component that can perform long-
running operations in the background & does not provide a
direct user interface
 e.g., a service might handle network transactions, play music, perform file

I/O, interact with a content provider, or run periodic tasks, all from the
background

 Another application component can start a service & it will
continue to run in the background even if the user switches to
another application/activity

 A component can also bind to a service to interact with it &
perform local (or even remote) IPC

http://developer.android.com/guide/components/services.html

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html

 Started – a service is “started”
when an application
component starts it by calling
startService()
 A started service often

performs a single operation
& doesn’t return a result to
the caller
▪ e.g., it might download or

upload a file over TCP
 When the operation is done,

the service can stop itself

 Bound – A service is “bound”
when an application component
binds to it by calling bindService()
 A bound service offers a client-

server interface that allows
components to interact with
the service, send requests, get
results, & even do so across
processes with IPC

 A bound service runs only as
long as another application
component is bound to it

http://developer.android.com/guide/components/services.html

http://developer.android.com/guide/components/services.html

 Logging Service
 Client Activity sends log messages to service
 Service writes messages to a log

console

 Music Playing Service
 Client Activity tells service to play a

music file
 Services plays music in background

(even if Client Activity pauses or terminates)

 SMS, MMS, & Email Services
 Manage messaging operations, such as sending data, text, & pdu messages

 ID Service
 Client Activity requests system-wide unique ID
 Service returns ID to Client

See packages/apps in Android source code for many services

 Implementing a Service is similar to implementing an Activity
 e.g., inherit from an Android base class, override lifecycle methods, include

the service in an AndroidManifest.xml file, etc.

 Services have their own lifecycle methods
 onCreate(), which, as with activities, is called when

the service process is created, by any means

 onStartCommand(), which is called each time the service
is sent a command via startService()

 onBind(), which is called whenever a client binds to
the service via bindService()

 onDestroy() which is called as the service is being
shut down

Note: Services do not automatically run in their own threads!!!

 You need to add the service to
your AndroidManifest. xml file

 Simply add a <service>
element as a child of the
<application> element

 You’ll also need to provide
android:name to reference
your service class

 Use android:process=
":my_process" to run the
service in its own process

 http://developer.android.com/reference/android/app/Service.html

 <service android:name=
 ".transaction.TransactionService"
 android:exported="true" />

 <service android:name=
 ".transaction.SmsReceiverService"
 android:exported="true" />

 <service android:name=
 "com.android.music.MediaPlaybackService"
 android:exported="false" />

MMS Services

Music Service

http://developer.android.com/reference/android/app/Service.html

 A Started Service is activated via
Context.startService()
 The Intent identifies the service to

communicate with & supplies
parameters (via Intent extras) to tell
the service what to do

 startService() does not block
 If the service is not already running it

will be started & will receive the
Intent via onStartCommand()

 Services often perform a single
operation & terminate themselves

 Running Services can also be halted
via stopService()

 Started Services don’t return
results to callers, but do return
values via onStartCommand():
 START_STICKY – don’t re-deliver

Intent to onStartCommand()
 START_REDELIVER_INTENT –

service should be restarted via a
call to onStartCommand(),
supplying the same Intent as was
delivered this time

 START_NOT_STICKY – service
should remain stopped until
explicitly started by application
code

http://android-developers.blogspot.com.au/2010/02/service-api-changes-starting-with.html

http://android-developers.blogspot.com.au/2010/02/service-api-changes-starting-with.html

 The most common Service subclass is IntentService
 IntentService is a base class for Services

that handle asynchronous requests
(expressed as Intents) on
demand

 IntentService is commonly
used to implement the
Command Processor pattern &
implements the Activator pattern
 See http://www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf,

http://www.voelter.de/data/pub/CommandRevisited.pdf &
http://www.dre.vanderbilt.edu/~schmidt/PDF/ActivatorReloaded.pdf for
info on these patterns

http://developer.android.com/reference/android/app/IntentService.html

http://www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf
http://www.voelter.de/data/pub/CommandRevisited.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ActivatorReloaded.pdf
http://developer.android.com/reference/android/app/IntentService.html

 Clients send requests through
startService(Intent) calls
 The service is started as needed,

handles each Intent in turn using
a worker thread, & stops itself
when it runs out of work

 This "work queue processor" model
(aka Command Processor pattern) is
commonly used to offload tasks
from an application's main thread

 The IntentService class exists to
simplify this pattern & take care
of the mechanics

 To use an IntentService, extend
the IntentService class &
implement the hook method
onHandleIntent(Intent)
 The IntentService will receive the

Intents, launch a worker thread, &
stop the service as appropriate

 All requests are handled on a
single worker thread
 they may take as long as necessary

(& will not block the application's
main loop), but only one request will
be processed at a time

http://www.vogella.com/articles/AndroidServices/article.html

http://developer.android.com/reference/android/content/Context.html
http://www.vogella.com/articles/AndroidServices/article.html

 The Service class uses the
application’s main thread,
while IntentService creates a
worker thread & uses that
thread to run the service

 IntentService creates a
queue that passes one intent
to onHandleIntent() at a
time
 Implementing a multi-threaded

service should therefore often
be made by extending Service
class directly

 The Service class needs a
manual stop using stopSelf()
 Meanwhile, IntentService

automatically stops itself when
there is no intent in queue

 IntentService implements
onBind() that returns null,
which means the IntentService
can not be bound by default

 IntentService implements
onStartCommand() that places
the Intent on its work queue &
calls onHandleIntent()

 Threads or AsyncTask perform
their work in a background
thread, so they don’t block the
main thread

 Since a Service performs its
work in the main thread it
might block that thread until
it finishes when performing an
intensive task
 such as calling a web service

 For intensive tasks a service
should run it’s work in a
background thread

 A Service is not a separate
process
 The Service object itself does not

imply it is running in its own process

 Unless otherwise specified, it runs in
the same process as the application it
is part of

 It keeps running until stopped by
itself, stopped by the user or killed by
the system if it needs memory

 A Service is not a thread
 It is not a means itself to do work off

of the main thread (to avoid
Application Not Responding errors)

 Activities have two ways to send
requests or data to a Service
 Send a command via startService()

This requires adding “extras” to the
Intent used to start a Service

 Bind to a Service via BindService()

You can then use the Binder RPC
mechanism via an object defined via
the Android Interface Definition
Language (AIDL) or Messengers

 Depending on how Services are
configured in AndroidManifest.xml
the communication can be local or
remote

 Service requests
represented as Intents

 Uses the IntentService
subclass of Service

 IntentService requests
handled sequentially in
a single worker thread

 IntentService started &
stopped as needed

public class BGLoggingDemo extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 …
 buttonStart.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(BGLoggingDemo.this,

 BGLoggingService.class);
 intent.putExtra("course.examples.Services.Logging",

 "Log this message");
 startService(intent);
 }
 });
 }
}

public class BGLoggingService extends IntentService {
…
 public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStartCommand(intent, flags, startId);
 return START_NOT_STICKY;
 }
 protected void onHandleIntent(Intent intent) {
 // Optionally create & start new Thread to handle request
 …
 Log.i(TAG,arg.getCharSequenceExtra
 ("course.examples.Services.Logging").toString());
 }
...
}

<application … >
 <activity android:name=".BGLoggingDemo"

 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:enabled="true" android:name=".BGLoggingService" />
 </application>

 The LoggingService is a
simplified example
 It doesn’t need to be

implemented as a
Service

 You could simply do the
logging in a new Thread

 Use Services when you
want to run a component
even when a user is not
interacting with the
Service’s hosting
application

 Client Activity can
start/stop playing
music via a Service

 If music is playing
when client leaves
the foreground,
music service will
continue playing

public class MusicService extends Service {
 MediaPlayer player;

…
 public void onCreate() {

 player = MediaPlayer.create(this, R.raw.braincandy);
 player.setLooping(false);

 }
 public int onStartCommand (Intent intent, int flags, int startid)

{
 player.start();
 return START_NOT_STICKY;
 }
 …
}

public class MusicServiceDemo extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 …
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View src) {
 …
 startService(

 new Intent(MusicServiceDemo.this,
 MusicService.class));
 }
 });
 }
}

 There are several ways to get
results from a Service back to an
invoking Activity
 Use Broadcast Intents

This requires having the Activity
register a BroadcastReceiver

 Use a Messenger object

This object can send messages to an
Activity’s Handler

 Use a Pending Intent

Using a PendingIntent to trigger a
call to Activity’s onActivityResult()

 Client Activity uses a “Started
Service” hosted in another process
 The Service is “sticky”

 Client Activity obtains a unique ID
from the Service

 Requires IPC via Broadcast Intents,
Messenger Object, & Pending Intent
to receive the unique ID

public class IDService extends Service {
 private Set<UUID> keys = new HashSet<UUID>();

 public static final String ACTION_COMPLETE =
 "examples.IDService.action.COMPLETE";

 public String getKey() {
 UUID id;
 synchronized (keys) {
 do {
 id = UUID.randomUUID();
 } while (keys.contains(id));
 keys.add(id);
 }
 result = Activity.RESULT_OK;
 return id.toString();
 }

 IDService extends Service & generates
a unique key

public void getIdReceiver (View view) {
 Intent intent = new Intent(this,
 IDService.class);
 startService(intent);
 }

public void getIdMessenger (View view) {
 Intent intent = new Intent(this,
 IDService.class);
 Messenger messenger =
 new Messenger(handler);
 intent.putExtra("MESSENGER", messenger);
 startService(intent);
}

 Client Activity sends Intents
via startService() public void getIdPendingIntent(View view) {

 Intent intent =
 new Intent(this, IDService.class);

 pendingIntent = createPendingResult
 (IDService.KEY_ID,
 new Intent(), 0);

 intent.putExtra("PENDING_INTENT",
 pendingIntent);

 startService(intent);
 }

public int onStartCommand(Intent intent, int flags, int startId) {
 Bundle extras = intent.getExtras();
 if (extras != null) {
 if (extras.get("MESSENGER") != null)
 getKeyMessenger (intent);
 else if (extras.get("PENDING_INTENT") != null)
 getKeyPendingIntent (intent);
 else
 Log.e(getClass().getName(), "Unknown extras");
 }
 else
 getKeyReceiver (intent);

 return Service.START_STICKY;
 }

 Service receives Intents via onStartCommand()

http://developer.android.com/reference/android/content/BroadcastReceiver.html

 Components that listen for broadcast
events & receive/react to the events
 Events implemented as Intent instances

 Events are broadcast system-wide

 Interested BroadcastReceivers
receive Intent via onReceive()

 BroadcastReceivers have no
user interface

 Android supports a wide range of
 notification mechanisms via its
Intents Framework

http://developer.android.com/reference/android/content/BroadcastReceiver.html

private BroadcastReceiver onEvent = new BroadcastReceiver() {
 public void onReceive(Context ctxt, Intent intent) {
 String key =
 intent.getStringExtra(IDService.RESULT_KEY);
 output.setText(key);
 }
};

public void onResume() {
 super.onResume();
 IntentFilter filter =
 new IntentFilter(IDService.ACTION_COMPLETE);
 registerReceiver(onEvent, filter);
 }

public void onPause() {
 unregisterReceiver(onEvent);
 super.onPause();
 }

 Client Activity is a BroadcastReceiver  Service replies to
Activity via the method
sendBroadcast()

 private void getKeyReceiver
 (Intent intent) {
 Intent replyIntent =
 new Intent
 (ACTION_COMPLETE);
 replyIntent.putExtra
 (RESULT_KEY,
 getKey());
 sendBroadcast(replyIntent);
 }

 A Messenger provides a
reference to a Handler that
others can use to send messages
to it

 This class allows message
passing IPC across processes via
the Command Processor pattern

 Client Activity creates a
Messenger pointing to a Handler
in one process & handing that
Messenger to another process

http://developer.android.com/reference/android/os/Messenger.html

 If you need your service to
communicate with remote
processes, then you can use
a Messenger to provide the
interface for your service

 This technique allows you to
perform IPC without the
need to use AIDL

 You can use Messengers
with both Bound & Started
Services

http://developer.android.com/reference/android/os/Messenger.html

Handler handler = new Handler() {
public void handleMessage
 (Message msg) {
 Bundle data = msg.getData();
 String key = data.getString
 (IDService.RESULT_KEY);
 …
 output.setText(key);
 }
};

 Client Activity receives Message
via its Handler event looper

 Service replies to
Activity via Messenger’s
send() method

 private void sendPath (String key,
 Messenger messenger) {
 Message msg = Message.obtain();
 msg.arg1 = result;
 Bundle bundle = new Bundle();
 bundle.putString(RESULT_KEY, key);
 msg.setData(bundle);
 messenger.send(msg);
 …
 private void getKeyMessenger (Intent intent) {
 String key = getKey();
 sendPath(key, (Messenger)
 intent.getExtras().get("MESSENGER"));
 }

 A description of an Intent & target
action to perform with it

 Instances of this class are created
with getActivity(),
getBroadcast(), getService(), &
createPendingResult()

 The returned object can be
handed to other applications so
that they can perform the action
you described on your behalf at a
later time

http://developer.android.com/reference/android/app/PendingIntent.html

 By giving a PendingIntent to
another application, you are
granting it the right to
perform the operation you
have specified as if the other
application was yourself

 A PendingIntent itself is
simply a reference to a
token maintained by the
system describing the
original data used to retrieve
it

http://developer.android.com/reference/android/app/PendingIntent.html

 protected void onActivityResult
 (int requestCode,
 int resultCode,
 Intent data) {
 if (requestCode ==
 IDService.KEY_ID) {
 String key =
 data.getStringExtra
 (IDService.RESULT_KEY);
 output.setText(key);
 }
}

 Client Activity receives
the reply intent via its
getActivityResult() hook
method

 Service replies to Activity
via PendingIntent’s
send() method

 private void getKeyPendingIntent
 (Intent intent) {
 PendingIntent pendingIntent = (PendingIntent)
 intent.getExtras().get
 ("PENDING_INTENT");
 Intent replyIntent = new Intent();
 replyIntent.putExtra(RESULT_KEY,
 getKey());
 try {
 pendingIntent.send(this, KEY_ID, replyIntent);
 } catch (PendingIntent.CanceledException e1) {
 …
 }
 }

 A Bound Service is the server
in a client/server interface

 A Bound Service allows
components (such as
Activities) to
 interact with the service

 send requests

 get results &

 converse across processes via
IPC

 A Bound Service typically
lives only while it serves
other application
component(s)

 A Bound Service extends the Service
class

 The Bound Service must implement
the onBind() hook method

 This method returns an Ibinder that defines a
programming interface clients can use to
interact with the service

 A bound service runs only as long as
another application component is
bound to it

 Multiple components can bind to service at
once, but the service is destroyed when all of
them unbind

http://developer.android.com/guide/components/bound-services.html

 Client components can
bind to a Service when
they want to interact
with it by calling
Context.bindService ()

 The client must provide
an implementation of a
ServiceConnection

 This object monitors the
connection with the
Service

 The Service will be
started if necessary

http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html

  Application components (clients) calls bindService() to bind to a service

 The Android system then calls the service's onBind() method, which returns
an IBinder for interacting with the service

 The binding is asynchronous—
bindService() returns
immediately & does not return
the IBinder to the client

 To receive the IBinder, the client
must create an instance of
ServiceConnection & pass it to
bindService()

 The ServiceConnection
includes a callback method
that the system calls to
deliver the IBinder

bindService()

 To bind to a service from your client, you must:

 When your client is destroyed, it will unbind from the service

 Always unbind when you're done interacting with the service or when your
activity pauses so that the service can shutdown while its not being used

1. Implement ServiceConnection & must
override two callback methods:

 onServiceConnected() − Android calls
this to deliver the IBinder returned by
the service's onBind() method

 onServiceDisconnected() − Android
calls this when the connection to the
service is unexpectedly lost, such as
when the service has crashed or has
been killed (not called with client calls
unbindService())

2. Call bindService(), passing
the ServiceConnection
implementation

3. When the system calls your
onServiceConnected() callback
method, you can begin making
calls to the service, using the
methods defined by the
interface

4. To disconnect from the service,
call unbindService()

 When creating a Bound Service, you must provide
an IBinder via an interface clients can use to interact
with the Service via the following

 Extending the Binder class
▪ If your service runs in the same process as the client you can

extend the Binder class & return an instance from onBind()

 Using a Messenger
▪ Create an interface for the service with a Messenger that

allows the client to send commands to the service across
processes using Message objects

▪ Doesn’t require thread-safe components

 Using Android Interface Definition Language
(AIDL)
▪ AIDL performs all the work to decompose objects into

primitives that the operating system can understand &
marshal them across processes to perform IPC

▪ Does require thread-safe components

bindService()

 Sometimes a
service is used
only by the local
application & need
not work across
processes

 In this case, you
can implement
your own Binder
subclass that
provides your
client direct access
to public methods
in a service

 Here's how to use locally Bound Service:
 In your service, create a Binder object that

either:

 contains public methods the client can call

 returns the current Service instance, which has
public methods the client can call, or

 returns an instance of another class hosted by
the service with public methods the client can
call

 Return this instance of Binder from the onBind()
callback method

 In the client, receive the Binder from
the onServiceConnected() callback method &
make calls to the Bound Service using the
provided methods

public class LocalService extends Service {
 // Binder given to clients
 private final IBinder mBinder = new
 LocalBinder();
 // Random number generator
 private final Random mGenerator =
 new Random();

 // Class used for the client Binder
 public class LocalBinder extends Binder {
 LocalService getService() {
 // Return instance so clients can
 // call public methods
 return LocalService.this;
 }
 }

 // Hook method called by Android
 // when client calls bind_service()
 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 // method for clients
 public int getRand() {
 return mGenerator.nextInt(100);
 }
}

public class BindingActivity extends
 Activity {
 // Instance of the service returned
 // from onBind()
 LocalService mService;

 // Keep track of whether we’re bound
 boolean mBound = false;

 protected void onCreate
 (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 protected void onStart() {
 super.onStart();
 Intent intent =
 new Intent(this,
 LocalService.class);
 // Bind to LocalService
 bindService(intent, mConnection,
 Context.BIND_AUTO_CREATE);
 }

 protected void onStop() {
 super.onStop();
 if (mBound) {
 unbindService(mConnection);
 mBound = false;
 }
 }

 public void onButtonClick(View v) {
 if (mBound) {
 Toast.makeText(this, mService.getRand(), Toast.LENGTH_SHORT).show();
 }
 }

 // Defines callbacks for service binding, passed to bindService()
 private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 // We‘re bound to LocalService, cast the IBinder & get LocalService instance
 LocalBinder binder = (LocalBinder) service;
 mService = binder.getService();
 mBound = true;
 }
 public void onServiceDisconnected(ComponentName arg0) { mBound = false; }
 };
}

 You can use a
Messenger to
communicate with
a Bound Service in
another process

 This technique
allows you to
perform IPC
between Activities
& Services without
the need to use
AIDL (which is
more complicated)

bindService()

Separate Process Areas

 Here's how to use a Messenger:
 The service implements a Handler that receives

a callback for each call from a client
 The Handler is used to create a Messenger

object (which is a reference to the Handler)
 The Messenger creates an IBinder that the

service returns to clients from onBind()
 Clients use the IBinder to instantiate

the Messenger (that references the
service's Handler), which the client uses to
send Message objects to the service

 The service receives each Message in
its Handler—specifically, in
the handleMessage() method

 Two-way messaging is a slight variation on this

public class MessengerService extends
 Service {
 // Command to service to display msg
 static final int MSG_SAY_HELLO = 1;

 // Handler of incoming client msgs
 class IncomeHandler extends Handler {
 public void handleMessage(Message
 msg) {
 switch (msg.what) {
 case MSG_SAY_HELLO:
 displayMsg(msg); break;
 default:
 super.handleMessage(msg);
 }
 }
 }

// Target we publish for clients to
// send messages to IncomeHandler
final Messenger mMessenger =
 new Messenger
 (new IncomeHandler());

// When binding to the service, we
// return an interface to our messenger
// for sending messages to the service
public IBinder onBind(Intent intent) {
 return mMessenger.getBinder();
}

}

public class ActivityMessenger extends Activity {
 // Messenger for communicating with the service.
 Messenger mService = null;
 // Flag indicating whether we have called bind on the service
 boolean mBound;

 private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 // This is called when the connection with the service has been established,
 // giving us the object we can use to interact with the service.
 mService = new Messenger(service); mBound = true;
 }
 public void onServiceDisconnected(ComponentName className) {
 // Called when the connection with the service is unexpectedly disconnected
 mService = null; mBound = false;
 }
 };

 protected void onStart() {
 super.onStart();
 // Bind to the service
 bindService(new Intent
 (this, MessengerService.class),
 mConnection,
 Context.BIND_AUTO_CREATE);
 }
 protected void onStop() {
 super.onStop();
 // Unbind from the service
 if (mBound) {
 unbindService(mConnection);
 mBound = false;
 }
 }
}

 public void onButtonClick(View v) {
 if (!mBound) return;
 // Create & send a message to service,
 // using a supported 'what' value
 Message msg = Message.obtain(null,
 MessengerService.MSG_SAY_HELLO,
 0, 0);
 try { mService.send(msg); } catch
 (RemoteException e) {
 e.printStackTrace();
 }
 }
 protected void onCreate
 (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 AIDL uses the Binder RPC
mechanism to implement
the Broker pattern

 There are two main steps:
 Define a remote interface via

AIDL
▪ The AIDL compiler generates

tedious (de)marshaling code via
its stub methods

 You implement Service-
& Client-specific methods

AIDL is the most powerful
& complex solution

 AIDL is a Android-specific language for
defining Binder-based service interfaces

 AIDL follows Java-like interface syntax &
allows application developers to declare
their “business” logic methods

 Each Binder-based service is defined in a
separate .aidl file & saved in a src directory

 The Android aidl build tool extracts a real Java interface (along with
a Stub providing Android’s android.os.IBinder) from each .aidl file &
places it into a gen directory

 Eclipse ADT automatically calls aidl for each .aidl file it finds in a src directory

package
course.examples.Services.
 KeyCommon;

interface KeyGenerator {
 String getKey();
}

http://developer.android.com/guide/components/aidl.html

http://developer.android.com/guide/components/aidl.html

 Similar to Java
interface syntax
 Can declare

methods but not
 static fields

 Remote method
parameters can
be labeled
 in: (default) xfer’d

to remote method
 out: returned to

the caller
 inout: both in &

out

 Java primitive types
 boolean, boolean[], byte, byte[], char[], int,

int[], long, long[], float, float[], double, double[]
 java.lang.CharSequence, java.lang.String

 java.util.List (uses java.util.ArrayList internally)
 List elements must be valid AIDL data types
 Generic lists supported

 Java.util.Map (uses java.util.HashMap
internally)
 Map elements must be valid AIDL data types
 Generic maps not supported

 Other AIDL-generated interfaces
 Classes implementing the Parcelable protocol

AIDL interface methods can not throw any exceptions

http://developer.android.com/reference/android/os/Binder.html

http://developer.android.com/reference/android/os/Binder.html

 Given an auto-generated AIDL server stub, you need to implement the service

 You can either do this directly in the stub or by routing the stub
implementation to other methods you already wrote

  The mechanics of implementing
a service are straightforward:

1. Create a private instance of
the AIDL-generated .Stub
class (e.g., IScript.Stub)

2. Implement methods
matching up with each of the
methods you placed in the
AIDL

3. Return this private instance
from your onBind() method
in the Service subclass

public class KeyGeneratorImpl extends Service {
 private final KeyGenerator.Stub binder =
 new KeyGenerator.Stub()
 {
 public String getKey() {
 // generate unique ID in a thread-safe
 // manner & return it
 }
 };

 public IBinder onBind(Intent intent) {
 return this.binder;
 }
}

 To use an AIDL-defined service, you first need to create an instance of your own
ServiceConnection class

 Your ServiceConnection
subclass needs to implement
two methods:

 onServiceConnected(),
which is called once your
activity is bound to the
Service to obtain a proxy to
the Binder implementation

 onServiceDisconnected(),
which is called if your
connection ends
abnormally, such as the
Service crashing

public class KeyUser extends Activity {
 private KeyGenerator service;
 private boolean bound;
 private ServiceConnection connection =

 new ServiceConnection() {

 public void onServiceConnected(
 ComponentName className,
 IBinder iservice) {
 service =
 KeyGenerator.Stub.asInterface(iservice);
 bound = true;
 }
…
output.setText(service.getKey());

 Calls made from the local process are executed in the same thread
that is making the call
 If this is your main UI thread, that thread continues to execute in the AIDL

interface
 If it is another thread, that is the one that executes your code in the service

 Calls from a remote process are dispatched from a thread pool the
platform maintains inside of your own process
 an implementation of an AIDL interface must therefore be completely

thread-safe
 The oneway keyword modifies the behavior of remote calls
 When used, a remote call does not block; it simply sends the transaction data

& returns immediately
 If oneway is used with a local call, there is no impact & the call is still

synchronous

 http://developer.android.com/guide/components/aidl.html

http://developer.android.com/guide/components/aidl.html

https://sites.google.com/site/io/anatomy--physiology-of-an-android

 Binder provides a high
performance RPC mechanism for
in-process & cross-process calls

 Binder-capable services are
described in AIDL, which is similar
to other IDL languages

 Since Binder is provided as a Linux
driver, the services can be written
in both C/C++ as well as Java

 Most Android services written in
Java

 The Binder Driver is installed in the Linux
kernel to accelerate IPC

 High performance through shared memory

 Per-process thread pool for processing
requests

 Reference counting & mapping of object
references across processes

 Supports synchronous calls between
processes

 Asynchrony is supported via callbacks

https://sites.google.com/site/io/anatomy--physiology-of-an-android

https://sites.google.com/site/io/anatomy--physiology-of-an-android

 To cross process
boundaries, AIDL uses
 an RPC transport
mechanism that handles
passing of data from one
process (caller) to another
(callee)

 Caller’s data is marshaled
into tokens that Binder
RPC understands, copied
to callee’s process, &
finally demarshaled into what callee expects

 Callee’s response is also marshaled by Binder RPC, copied to caller’s process where
it is demarshaled into what caller expects

 (de)marshaling is automatically provided by the Binder RPC mechanism

https://sites.google.com/site/io/anatomy--physiology-of-an-android

http://marakana.com/static/courseware/android/internals/index.html

 All caller calls go thru
the transact() method,
which automatically
marshals arguments &
return values via
Parcels

 Parcel is a generic
data structure that
maintains meta-
data about contents

 Caller calls to
transact() are by
default synchronous

 i.e., provide same
semantics as a local
method call

http://marakana.com/static/courseware/android/internals/index.html

http://marakana.com/static/courseware/android/internals/index.html

 On callee side, the
Binder maintains a
pool of threads to
handle incoming RPC
requests

 unless call is local, in
which case same
thread is used

 Callee methods can
be oneway, in which
case caller calls return
immediately

 Callee’s mutable state
must be thread-safe to
handle concurrent
requests from multiple
callers

http://marakana.com/static/courseware/android/internals/index.html

 Client uses a “Bound Service” hosted in
another application

 Client needs an ID from service
 Requires IPC via the Android Interface

Definition Language (AIDL)
 AIDL uses the Android Binder RPC

mechanism

 Overall structure of this solution is
similar to the Messenger solution
presented earlier
 Main difference is that the AIDL calls are

synchronous, whereas the Messenger calls
are asynchronous

 Declare interface in an .aidl file

package course.examples.Services.KeyCommon;

interface KeyGenerator {
 String getKey();
}

 Generate a Java interface with same name as .aidl file
 Eclipse does this automatically

 Generated interface contains:
 Abstract inner class called Stub
 Interface & helper methods

public class KeyGeneratorImpl extends Service {
 …
 private final KeyGenerator.Stub binder =

 new KeyGenerator.Stub() {
 public String getKey() {
 // generate unique ID in a thread-safe manner & return it
 }
 };
…

…
 public IBinder onBind(Intent intent) {
 return this.binder;
 }
}

public class KeyUser extends Activity {
 private KeyGenerator service; // handle to Remote Service
 private boolean bound;
// Remote Service callback methods
 private ServiceConnection connection =

 new ServiceConnection() {
 public void onServiceConnected(
 ComponentName className, IBinder iservice) {
 service = KeyGenerator.Stub.asInterface(iservice);
 bound = true;
 }
…

…
public void onServiceDisconnected(

 ComponentName className) {
 service = null; bound = false;
 }
 };
…

protected void onStart() {
 super.onStart();
 Intent intent = new Intent(KeyGenerator.class.getName());
 // bind to Service
 bindService(intent,this.connection,
 Context.BIND_AUTO_CREATE);
 }
 protected void onStop() {
 // unbind from Service
 if (bound) unbindService(this.connection);
 super.onStop();
 }
}

…
public void onCreate(Bundle icicle) {
 …
 goButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 // call remote method
 output.setText(service.getKey());
 } catch (RemoteException e) {}
 }
 });
…
}

<manifest … package="course.examples.Services.KeyClient">
 <application …">
 <activity android:name=".KeyUser" …>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=

 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

<manifest …package="course.examples.Services.KeyService">
 <application …">
 <service android:name=".KeyGeneratorImpl"

 android:exported="true">
 <intent-filter>

 <action android:name=
 "course.examples.Services.KeyCommon.KeyGenerator"/>
 </intent-filter>
 </service>
 </application>
</manifest>

 The Service AndroidManifest.xml file must be registered with
Android before the client tries to run

 Client uses a “Bound Service” hosted in
another application

 Client needs an ID from service

 Requires IPC via the Android Interface
Definition Language (AIDL)
 AIDL uses the Android Binder RPC mechanism

 Overall structure of this solution is similar
to the AIDL solution presented earlier
 Main difference is that the AIDL calls in this

example are oneway asynchronous, whereas
the previous AIDL example calls are twoway
synchronous

 Declare interface in two .aidl files
 You can’t define more than one interface in each *.aidl file

package course.examples.Services.
KeyCommon;

import course.examples.Services.
KeyCommon.KeyGeneratorCallback;

interface KeyGenerator {
 oneway void setCallback
 (in KeyGeneratorCallback callback);
}

package course.examples.Services.
KeyCommon;

interface KeyGeneratorCallback {
 oneway void sendKey
 (in String key);
}

KeyGenerator.idl KeyGeneratorCallback.idl

 When oneway is used on a remote call it does not block; it simply
sends the transaction data & immediately returns

 Generate Java interfaces with same name as .aidl files
 Eclipse does this automatically

 Generated interfaces contain:
 Abstract inner class called Stub
 Interface & helper methods

public class KeyGeneratorImpl extends Service {
 …
 private final KeyGenerator.Stub binder =

 new KeyGenerator.Stub() {
 public void setCallback(final keyGeneratorCallback callback) {
 // generate unique ID in a thread-safe manner & return it
 // by invoking callback.sendKey(key)
 }
 };
…

 The setCallback() method runs in a thread from the Android Binder
framework’s thread pool

 Since setCallback() is a oneway it doesn’t block the remote caller

…
 public IBinder onBind(Intent intent) {
 return this.binder;
 }
}

public class KeyUser extends Activity {
 private KeyGenerator service; // handle to Remote Service
 private boolean bound;
 // Remote Service callback methods
 private ServiceConnection connection =

 new ServiceConnection() {
 public void onServiceConnected(
 ComponentName className, IBinder iservice) {
 service = KeyGenerator.Stub.asInterface(iservice);
 bound = true;
 }
…

…
public void onServiceDisconnected(

 ComponentName className) {
 service = null; bound = false;
 }
 };
…

 Note that this connection object enables both AIDL calls from the
client to the service & from the service back to the client

protected void onStart() {
 super.onStart();
 Intent intent = new Intent(KeyGenerator.class.getName());
 // bind to Service
 bindService(intent,this.connection,
 Context.BIND_AUTO_CREATE);
 }
 protected void onStop() {
 // unbind from Service
 if (bound) unbindService(this.connection);
 super.onStop();
 }
}

…
private final KeyGeneratorCallback.Stub callback = new

KeyGeneratorCallback.Stub() {
 public void sendKey (final String key) {
 runOnUiThread (new Runnable() {
 public void run() {
 output.setText(key); // Output the key to the user’s display
 }
 });
 }
…

 sendKey() runs in a thread from the Android Binder framework’s
thread pool, so it needs to queue the output to run in main thread

 Since sendKey() is oneway it doesn’t block the remote caller

…
public void onCreate(Bundle icicle) {
 …
 goButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 try {
 // call remote method to register callback
 if (bound) service.setCallback(callback);
 } catch (RemoteException e) {}
 }
 });
…
}

<manifest … package="course.examples.Services.KeyDemo">
 <application …">
 <activity android:name=".KeyUser" …>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=

 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".KeyGeneratorImp"

 android:exported= "true" android:process=":remote" >
 </service>
 </application>
</manifest>

 AIDL implements the Broker pattern, whereas
Messengers implements the Command
Processor pattern

 When you need to perform IPC, using a
Messenger for your interface is simpler than
implementing it with AIDL
 The Messenger queues all calls to the service,

which handles them asynchronously

 In contrast, a pure AIDL interface sends
simultaneous requests to the service
synchronously, which must then handle multi-
threading

 If you need asynchronous behavior for AIDL
interfaces you’ll need to implement callback
objects, as shown in the last example

 For many practical
apps the Service
doesn't need to
perform multi-
threading
 Using a Messenger

allows the service to
handle one call at a
time

 If it's important that
your service be multi-
threaded, then you
should use AIDL to
define your interface

 LoggingServiceExample
 MusicPlayingServiceExample
 ServiceWithIPCExampleClient
 ServiceWithIPCExampleService

	Programming the Android Platform
	Service Overview
	Two Forms of Services
	Example Services
	Overview of a Service
	Overview of a Service (cont’d)
	Programming Started Services
	Overview of IntentService
	Programming an IntentService
	Service vs. IntentService
	Service vs. Thread vs. AsyncTask
	Communicating to Services
	Logging Service Example
	Logging Service (cont.)
	Logging Service (cont.)
	Logging Service (cont.)
	Analysis of the Logging Service
	Music Player Service
	Music Player Service (cont.)
	Music Player Service (cont.)
	Communicating From Services
	ID Service
	ID Service (cont’d)
	ID Service (cont’d)
	ID Service (cont’d)
	Overview of Broadcast Receivers
	Using Broadcast Intents
	Overview of Messenger Objects
	Using a Messenger Object
	Overview of Pending Intents
	Using a Pending Intents
	Overview of Bound Services
	Programming Bound Services
	Bound Service Interactions
	Bound Service Interactions (cont’d)
	Communicating w/Bound Services
	Extending the Binder Class
	How to Extend the Binder Class
	Example of Extending Binder
	Example of Extending Binder (cont’d)
	Extending the Binder Class (cont’t)
	Using a Messenger
	How to Use a Messenger
	Example of Using Messenger
	Example of Using Messenger (cont’d)
	Example of Using Messenger (cont’d)
	Using AIDL
	Overview of AIDL
	AIDL Syntax & Data Types
	Structure of AIDL-based Solutions
	Implementing an AIDL Interface
	Accessing an AIDL Interface
	AIDL Call Semantics
	Overview of Binder RPC
	AIDL & Binder RPC
	AIDL & Binder RPC (cont’d)
	AIDL & Binder RPC (cont’d)
	ID Service via Synchronous AIDL
	Define Remote Interface
	Compile .aidl File
	Implement Remote Methods
	Implement Service Methods
	Implement the ID Client
	Implement the ID Client (cont.)
	Implement the ID Client (cont.)
	Implement the ID Client (cont.)
	Client AndroidManifest.xml
	Service AndroidManifest.xml
	ID Service via Asynchronous AIDL
	Define Remote Interfaces
	Compile .aidl File
	Implement Remote Methods
	Implement Service Methods
	Implement the ID Client
	Implement the ID Client (cont.)
	Implement the ID Client (cont.)
	Implement the ID Client (cont.)
	Implement the ID Client (cont.)
	ID Service AndroidManifest.xml
	Comparing AIDL with Messengers
	Source Code Examples

