
Introduction 

CS 282  
Principles of Operating Systems II 

Systems Programming for Android 



 Learn about 
 Mobile devices 
 Systems programming for  

mobile devices 
 The Android platform 

 Develop interesting Android 
systems programming  
applications 
 Expect lots of programming 
 Each student will do multiple 

projects 

 





 Douglas C. Schmidt 
 d.schmidt@vanderbilt.edu 
 Office: FGH #226 
 Office hours: M. 1-3pm & W. 1-3pm 

▪ Nearly always reachable by email 
 TAs/graders 
 Zach McCormick 

▪ zach.mccormick@vanderbilt.edu  
▪ Office hours: Weekday mornings 

 Jesse Badash 
▪ jesse.l.badash@vanderbilt.edu 
▪ Office hours: TBD 

 Course URL: www.dre.vanderbilt.edu/~schmidt/cs282  
 

 

mailto:zach.mccormick@vanderbilt.edu
mailto:jesse.l.badash@vanderbilt.edu
http://www.dre.vanderbilt.edu/~schmidt/cs282
http://www.dre.vanderbilt.edu/~schmidt/bio.html
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• There will be 5-6 programming 
assignments written in Java 
• Can use Windows, Linux, Mac, etc. 

• Must be done individually 
• Programs will be graded as follows: 
• 40% execution correctness  
• 30% structure (e.g., modularization, 

information hiding, etc.)  
• 10% insightful programming (e.g., 

developing reusable class 
components, etc.)  

• 10% Consistent style (e.g., 
capitalization, indenting, etc.)  

• 10% appropriate commenting style  

• There will be a 5 point deduction 
(out of a possible 100 points) for 
each day that your program is late 
• Programs turned in later than 

two calendar days after the due 
date will receive a zero 

• There will be weekly quizzes & a 
comprehensive final exam 

• The relative weighting of each 
portion of the course is :  
• 40% Programming projects 
• 40% Quizzes  
• 10% Final Exam 
• 10% Class participation 
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• Assignments must be submitted on time 

• Work must be your own (as per www.owen.vanderbilt.edu/vanderbilt/ 
about-us/honor-code.cfm) 

• No laptops open in class unless explicitly allowed 

• You will be called upon periodically to answer questions 

• 10% class participation grade, so be involved & attend class 

• You’ll get out of this course what you put into it, so be prepared to work 
hard & learn a lot  

• Be prepared for weekly quizzes & occasional guest lectures 

• Make sure to avail yourself of available help, e.g., office hours, TAs, 
mailing list, etc. 

http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm
http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm


 Mix of lecture & 
programming exercises 
 ½ presentation 
 ½ laboratory exercises & 

semester project 
 Organization will remain 

flexible 
 Will change as needed 
 







 Android has 50% of the 
smartphone market (#1) 

 iPhone has 30% of the 
smartphone market 
(#2) 

 Blackberry, Windows 
Mobile, & Symbian are 
rapidly losing market 
share since their 
platforms not nearly as 
interesting to develop 
for as Android/iPhone 

 

 



Android is:  
 the fastest growing 

smartphone platform 
 open-source & works on 

multiple platforms 
 no need to own a Mac 
 no need to join a 

developer program 
 easy to learn for Java (& C++) 

programmers 
 much easier to transition 

to than Objective-C 

 
 





 Android is a software stack for mobile devices that provides an 
operating system, middleware, & key services/applications 

 The Android SDK contains libraries & development tools for 
creating applications 

 Android uses the Eclipse Integrated Development Environment 
 Android Eclipse Plugins provide: 
 wizards for creating new apps 
 a visual editor for creating GUIs 
 editors for manipulating Android XML  

descriptors needed for your app 
 an emulator for testing your apps on  

your PC 
 a debugger for finding errors in the 

emulator or on a device 
 

 



 You need to download & install “Eclipse  
Classic” from:  
http://www.eclipse.org/downloads/ 

 You will also need to download & install  
the Java SDK from  
http://www.oracle.com/technetwork/ 
java/javase/downloads 
& the Android SDK from:  
http://developer.android.com/sdk 

 Once Eclipse & the Java & Android SDKs are installed, follow the 
“Installing the ADT Plugin for Eclipse” instructions here: 
http://developer.android.com/sdk/installing.html 

 

http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/l
http://developer.android.com/sdk/installing.html


 Android is well documented 
 The Android javadoc references will be 

critical reference material for your 
projects: 
 http://developer.android.com/reference/

packages.html 
 The Android developer guide is another 

important resource: 
 http://developer.android.com/guide/ 

components 
 We recommend “The Busy Coder’s Guide 

to Android Development” e-book 
 http://commonsware.com/warescription  
 

 

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components
http://developer.android.com/guide/components
http://commonsware.com/warescription




 Android is a complete software 
stack for mobile devices (& more) 

 Android includes: 
 Operation System 

▪ Linux variant 

 Specialized Java Virtual Machine 

▪ Dalvik, which is optimized for power 
consumption 

 Middleware Stack for: 

▪ Telephony 

▪ GUIs 

▪ Apps 

▪ App Distribution 

▪ Etc. 
 

 

 



http://developer.android.com/guide/basics/what-is-android.html   
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 Abstraction layer between hardware & 
software 

 Provides services such as: 
 Security 
 Memory & process management 
 Network stack 
 Device driver model 



 Android-specific components 
 Binder – inter-process communication (IPC) 
 Android shared memory 
 Power management 
 Alarm driver 
 Low memory killer 
 Kernel debugger & Logger 



 User space C/C++ library 
layer 

 Defines the interface that 
Android requires hardware 
“drivers” to implement 

  Separates Android 
platform logic from 
hardware interface 

 Why a user-space HAL? 
  Not all components have 

standardized kernel driver 
interfaces 

  Kernel drivers are GPL, which 
exposes any proprietary IP 

 Android has specific 
requirements for hardware 
drivers 



 System C library 
▪ bionic libc 

 Surface Manager 
▪ display management 

 Media Framework 
▪ audio/video 

 FreeType 
▪ library for rendering fonts 

 Webkit 
▪ web browser engine 

 OpenGL ES, SGL 
▪ graphics engines 

 SQLite 
▪ relational database engine 

 SSL 
▪ secure sockets layer 



 Support services for executing applications 
 Core (Java) Libraries 
 Dalvik Virtual Machine 



 Core Java classes 
 android.* 
 java.*, javax.* 
 junit.* 
 org.apache.*, org.json.*, org.xml.* 

 Doesn’t include all standard Java SDK classes 
 http://developer.android.com/reference/packages.html  
 http://www.zdnet.com/blog/burnette/java-vs-android-

apis/504  

http://developer.android.com/reference/packages.html
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504


 Android apps typically written  
in Java 
 Do not run in a standard Java  

virtual machine 
 dx program transforms java  

classes into .dex-formatted  
bytecodes 

 Bytecodes executed in Dalvik Virtual Machine 
 Applications typically run in their own processes, 

inside their own instance of the Dalvik VM 

http://sites.google.com/site/io/dalvik-vm-internals  

http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals


 Activities  
 represents a single screen  

with a user interface 
 Services 
 runs in the background to perform  

long-running operations or to  
perform work for remote processes 

 Content Providers 
 manages a shared set of  

application data 

 Broadcast Receivers 
 a component that responds to system-wide broadcast announcements 



 Window Manager 
 Manages top-level 

window’s look & behavior 
 View system  
 lists, grids, text boxes, 

buttons, etc. 

 Content Providers 
 Inter-application data 

sharing 
 Activity Manager  
 Application lifecycle & 

common navigation 
stack 



 Package manager 
 Manages application 

packages 
 Telephony manager 
 State of telephony services 

 Resource Manager 
 Manages non-code 

resources: strings, graphics, 
& layout files 

 Location manager 
 Access to system 

location services 
 Notification Manager  
 Notify users when 

events occur 



 Standard apps include: 
 Home – main screen 
 Contacts – contacts database 
 Phone – dial phone numbers 
 Browser – view web pages 
 Email reader – Gmail & others 

 Your App! 





 Dalvik VM designed explicitly to run on a handset 
 Originally relatively little RAM 
▪ e.g., 64Mb total: ~40Mb for Linux & Android services, ~10Mb 

for Android middleware, ~10Mb available at runtime for apps 

 Originally relatively slow CPU 
 No swap space 
 Limited battery life 
 Multiple independent,  

mutually-suspicious  
processes 

http://sites.google.com/site/io/dalvik-vm-internals  

http://sites.google.com/site/io/dalvik-vm-internals


 Memory 
 .dex file has common 

constant pool for multiple 
classes 

 Modified garbage collection 
to improve memory sharing 

 CPU  
 Optimizations at 

installation time  
 Register-based, rather than 

stack-based 
 

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf 

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf


 Every Java program is compiled to byte-code 

 The Java byte-code is then transformed into 
Dalvik byte-code with the help of the dx tool 
& stored in .dex file 

 That's upon what Dalvik performs 
operations, such as verification & 
optimization 

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf 

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf


 Expected benefits over 
stack-based VMs 
 Avoids slow instruction 

dispatch 
 Avoids unnecessary 

memory accesses 
 More efficient instruction 

stream 
▪ Higher semantic 

density per instructions 

* See http://www.youtube.com/watch?v=ptjedOZEXPM  

 30% fewer instructions 
 35% fewer code units (1-

byte vs. 2-byte 
instructions) 
 35% more bytes in the 

instruction stream 
▪ but can consume 

instructions two bytes at a 
time 

 
 
 

http://www.youtube.com/watch?v=ptjedOZEXPM


public static long sumArray(int[] arr) { 
long sum = 0; 
for (int i : arr) { 

  sum +=    i;  
 } 

return sum; 
 } 
    
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



% javap –c ClassName 

 



% dexdump –d classes.dex 
 



1. for (int i = initializer; i >= 0; i--) 

2. int limit = calculate limit;     
for (int i = 0; i < limit; i++) 

3. Type[] array = get array;     
for (Type obj : array) 

4. for (int i = 0; i < array.length; i++) 

5. for (int i = 0; i < this.var; i++) 

6. for (int i = 0; i < obj.size(); i++) 

7. Iterable<Type> list = get list;     
for (Type obj : list) 



 Lab 1 will help you set up your own laptop for 
Android programming 
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