
Introduction

CS 282
Principles of Operating Systems II

Systems Programming for Android

 Learn about
 Mobile devices
 Systems programming for

mobile devices
 The Android platform

 Develop interesting Android
systems programming
applications
 Expect lots of programming
 Each student will do multiple

projects

 Douglas C. Schmidt
 d.schmidt@vanderbilt.edu
 Office: FGH #226
 Office hours: M. 1-3pm & W. 1-3pm

▪ Nearly always reachable by email
 TAs/graders
 Zach McCormick

▪ zach.mccormick@vanderbilt.edu
▪ Office hours: Weekday mornings

 Jesse Badash
▪ jesse.l.badash@vanderbilt.edu
▪ Office hours: TBD

 Course URL: www.dre.vanderbilt.edu/~schmidt/cs282

mailto:zach.mccormick@vanderbilt.edu
mailto:jesse.l.badash@vanderbilt.edu
http://www.dre.vanderbilt.edu/~schmidt/cs282
http://www.dre.vanderbilt.edu/~schmidt/bio.html

5

• There will be 5-6 programming
assignments written in Java
• Can use Windows, Linux, Mac, etc.

• Must be done individually
• Programs will be graded as follows:
• 40% execution correctness
• 30% structure (e.g., modularization,

information hiding, etc.)
• 10% insightful programming (e.g.,

developing reusable class
components, etc.)

• 10% Consistent style (e.g.,
capitalization, indenting, etc.)

• 10% appropriate commenting style

• There will be a 5 point deduction
(out of a possible 100 points) for
each day that your program is late
• Programs turned in later than

two calendar days after the due
date will receive a zero

• There will be weekly quizzes & a
comprehensive final exam

• The relative weighting of each
portion of the course is :
• 40% Programming projects
• 40% Quizzes
• 10% Final Exam
• 10% Class participation

6

• Assignments must be submitted on time

• Work must be your own (as per www.owen.vanderbilt.edu/vanderbilt/
about-us/honor-code.cfm)

• No laptops open in class unless explicitly allowed

• You will be called upon periodically to answer questions

• 10% class participation grade, so be involved & attend class

• You’ll get out of this course what you put into it, so be prepared to work
hard & learn a lot

• Be prepared for weekly quizzes & occasional guest lectures

• Make sure to avail yourself of available help, e.g., office hours, TAs,
mailing list, etc.

http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm
http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm

 Mix of lecture &
programming exercises
 ½ presentation
 ½ laboratory exercises &

semester project
 Organization will remain

flexible
 Will change as needed

 Android has 50% of the
smartphone market (#1)

 iPhone has 30% of the
smartphone market
(#2)

 Blackberry, Windows
Mobile, & Symbian are
rapidly losing market
share since their
platforms not nearly as
interesting to develop
for as Android/iPhone

Android is:
 the fastest growing

smartphone platform
 open-source & works on

multiple platforms
 no need to own a Mac
 no need to join a

developer program
 easy to learn for Java (& C++)

programmers
 much easier to transition

to than Objective-C

 Android is a software stack for mobile devices that provides an
operating system, middleware, & key services/applications

 The Android SDK contains libraries & development tools for
creating applications

 Android uses the Eclipse Integrated Development Environment
 Android Eclipse Plugins provide:
 wizards for creating new apps
 a visual editor for creating GUIs
 editors for manipulating Android XML

descriptors needed for your app
 an emulator for testing your apps on

your PC
 a debugger for finding errors in the

emulator or on a device

 You need to download & install “Eclipse
Classic” from:
http://www.eclipse.org/downloads/

 You will also need to download & install
the Java SDK from
http://www.oracle.com/technetwork/
java/javase/downloads
& the Android SDK from:
http://developer.android.com/sdk

 Once Eclipse & the Java & Android SDKs are installed, follow the
“Installing the ADT Plugin for Eclipse” instructions here:
http://developer.android.com/sdk/installing.html

http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/l
http://developer.android.com/sdk/installing.html

 Android is well documented
 The Android javadoc references will be

critical reference material for your
projects:
 http://developer.android.com/reference/

packages.html
 The Android developer guide is another

important resource:
 http://developer.android.com/guide/

components
 We recommend “The Busy Coder’s Guide

to Android Development” e-book
 http://commonsware.com/warescription

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components
http://developer.android.com/guide/components
http://commonsware.com/warescription

 Android is a complete software
stack for mobile devices (& more)

 Android includes:
 Operation System

▪ Linux variant

 Specialized Java Virtual Machine

▪ Dalvik, which is optimized for power
consumption

 Middleware Stack for:

▪ Telephony

▪ GUIs

▪ Apps

▪ App Distribution

▪ Etc.

http://developer.android.com/guide/basics/what-is-android.html

Ja
va

C+

+/
C/

JN
I

C

http://developer.android.com/guide/basics/what-is-android.html

 Abstraction layer between hardware &
software

 Provides services such as:
 Security
 Memory & process management
 Network stack
 Device driver model

 Android-specific components
 Binder – inter-process communication (IPC)
 Android shared memory
 Power management
 Alarm driver
 Low memory killer
 Kernel debugger & Logger

 User space C/C++ library
layer

 Defines the interface that
Android requires hardware
“drivers” to implement

 Separates Android
platform logic from
hardware interface

 Why a user-space HAL?
 Not all components have

standardized kernel driver
interfaces

 Kernel drivers are GPL, which
exposes any proprietary IP

 Android has specific
requirements for hardware
drivers

 System C library
▪ bionic libc

 Surface Manager
▪ display management

 Media Framework
▪ audio/video

 FreeType
▪ library for rendering fonts

 Webkit
▪ web browser engine

 OpenGL ES, SGL
▪ graphics engines

 SQLite
▪ relational database engine

 SSL
▪ secure sockets layer

 Support services for executing applications
 Core (Java) Libraries
 Dalvik Virtual Machine

 Core Java classes
 android.*
 java.*, javax.*
 junit.*
 org.apache.*, org.json.*, org.xml.*

 Doesn’t include all standard Java SDK classes
 http://developer.android.com/reference/packages.html
 http://www.zdnet.com/blog/burnette/java-vs-android-

apis/504

http://developer.android.com/reference/packages.html
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504

 Android apps typically written
in Java
 Do not run in a standard Java

virtual machine
 dx program transforms java

classes into .dex-formatted
bytecodes

 Bytecodes executed in Dalvik Virtual Machine
 Applications typically run in their own processes,

inside their own instance of the Dalvik VM

http://sites.google.com/site/io/dalvik-vm-internals

http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals

 Activities
 represents a single screen

with a user interface
 Services
 runs in the background to perform

long-running operations or to
perform work for remote processes

 Content Providers
 manages a shared set of

application data

 Broadcast Receivers
 a component that responds to system-wide broadcast announcements

 Window Manager
 Manages top-level

window’s look & behavior
 View system
 lists, grids, text boxes,

buttons, etc.

 Content Providers
 Inter-application data

sharing
 Activity Manager
 Application lifecycle &

common navigation
stack

 Package manager
 Manages application

packages
 Telephony manager
 State of telephony services

 Resource Manager
 Manages non-code

resources: strings, graphics,
& layout files

 Location manager
 Access to system

location services
 Notification Manager
 Notify users when

events occur

 Standard apps include:
 Home – main screen
 Contacts – contacts database
 Phone – dial phone numbers
 Browser – view web pages
 Email reader – Gmail & others

 Your App!

 Dalvik VM designed explicitly to run on a handset
 Originally relatively little RAM
▪ e.g., 64Mb total: ~40Mb for Linux & Android services, ~10Mb

for Android middleware, ~10Mb available at runtime for apps

 Originally relatively slow CPU
 No swap space
 Limited battery life
 Multiple independent,

mutually-suspicious
processes

http://sites.google.com/site/io/dalvik-vm-internals

http://sites.google.com/site/io/dalvik-vm-internals

 Memory
 .dex file has common

constant pool for multiple
classes

 Modified garbage collection
to improve memory sharing

 CPU
 Optimizations at

installation time
 Register-based, rather than

stack-based

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

 Every Java program is compiled to byte-code

 The Java byte-code is then transformed into
Dalvik byte-code with the help of the dx tool
& stored in .dex file

 That's upon what Dalvik performs
operations, such as verification &
optimization

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

 Expected benefits over
stack-based VMs
 Avoids slow instruction

dispatch
 Avoids unnecessary

memory accesses
 More efficient instruction

stream
▪ Higher semantic

density per instructions

* See http://www.youtube.com/watch?v=ptjedOZEXPM

 30% fewer instructions
 35% fewer code units (1-

byte vs. 2-byte
instructions)
 35% more bytes in the

instruction stream
▪ but can consume

instructions two bytes at a
time

http://www.youtube.com/watch?v=ptjedOZEXPM

public static long sumArray(int[] arr) {
long sum = 0;
for (int i : arr) {

 sum += i;
 }

return sum;
 }

% javap –c ClassName

% dexdump –d classes.dex

1. for (int i = initializer; i >= 0; i--)

2. int limit = calculate limit;
for (int i = 0; i < limit; i++)

3. Type[] array = get array;
for (Type obj : array)

4. for (int i = 0; i < array.length; i++)

5. for (int i = 0; i < this.var; i++)

6. for (int i = 0; i < obj.size(); i++)

7. Iterable<Type> list = get list;
for (Type obj : list)

 Lab 1 will help you set up your own laptop for
Android programming

	Programming the Android Platform
	Course Goals
	Administrivia
	Logistics
	Course Work
	Ground Rules
	Class Organization
	Why Mobile Devices & Android?
	Mobile Devices are the Next Computing Platform
	Why Android?
	Why Android?
	Getting Started with Android
	Developing Android Apps
	Setting Up an Android Development Environment
	Figuring Out Android
	Overview of Android
	What is Android?
	The Android Architecture
	Linux Kernel
	Linux Kernel (cont.)
	Hardware Abstraction Layer
	Native C/C++ Libraries
	Android Runtime
	Core (Java) Libraries
	Dalvik Virtual Machine
	Key Android App Components
	Application Frameworks (cont.)
	Application Frameworks (cont.)
	Applications
	Innards of the Dalvik VM
	Dalvik Virtual Machine
	Dalvik Virtual Machine (cont.)
	Converting Java byte-code to Dalvik Byte-code
	Why Dalvik Uses Registers
	Dalvik VM Example
	Java Bytecode
	Dex Bytecode
	Loop Wisely to Conserve Power
	Assignment

