
Introduction

CS 282
Principles of Operating Systems II

Systems Programming for Android

 Learn about
 Mobile devices
 Systems programming for

mobile devices
 The Android platform

 Develop interesting Android
systems programming
applications
 Expect lots of programming
 Each student will do multiple

projects

 Douglas C. Schmidt
 d.schmidt@vanderbilt.edu
 Office: FGH #226
 Office hours: M. 1-3pm & W. 1-3pm

▪ Nearly always reachable by email
 TAs/graders
 Zach McCormick

▪ zach.mccormick@vanderbilt.edu
▪ Office hours: Weekday mornings

 Jesse Badash
▪ jesse.l.badash@vanderbilt.edu
▪ Office hours: TBD

 Course URL: www.dre.vanderbilt.edu/~schmidt/cs282

mailto:zach.mccormick@vanderbilt.edu
mailto:jesse.l.badash@vanderbilt.edu
http://www.dre.vanderbilt.edu/~schmidt/cs282
http://www.dre.vanderbilt.edu/~schmidt/bio.html

5

• There will be 5-6 programming
assignments written in Java
• Can use Windows, Linux, Mac, etc.

• Must be done individually
• Programs will be graded as follows:
• 40% execution correctness
• 30% structure (e.g., modularization,

information hiding, etc.)
• 10% insightful programming (e.g.,

developing reusable class
components, etc.)

• 10% Consistent style (e.g.,
capitalization, indenting, etc.)

• 10% appropriate commenting style

• There will be a 5 point deduction
(out of a possible 100 points) for
each day that your program is late
• Programs turned in later than

two calendar days after the due
date will receive a zero

• There will be weekly quizzes & a
comprehensive final exam

• The relative weighting of each
portion of the course is :
• 40% Programming projects
• 40% Quizzes
• 10% Final Exam
• 10% Class participation

6

• Assignments must be submitted on time

• Work must be your own (as per www.owen.vanderbilt.edu/vanderbilt/
about-us/honor-code.cfm)

• No laptops open in class unless explicitly allowed

• You will be called upon periodically to answer questions

• 10% class participation grade, so be involved & attend class

• You’ll get out of this course what you put into it, so be prepared to work
hard & learn a lot

• Be prepared for weekly quizzes & occasional guest lectures

• Make sure to avail yourself of available help, e.g., office hours, TAs,
mailing list, etc.

http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm
http://www.owen.vanderbilt.edu/vanderbilt/about-us/honor-code.cfm

 Mix of lecture &
programming exercises
 ½ presentation
 ½ laboratory exercises &

semester project
 Organization will remain

flexible
 Will change as needed

 Android has 50% of the
smartphone market (#1)

 iPhone has 30% of the
smartphone market
(#2)

 Blackberry, Windows
Mobile, & Symbian are
rapidly losing market
share since their
platforms not nearly as
interesting to develop
for as Android/iPhone

Android is:
 the fastest growing

smartphone platform
 open-source & works on

multiple platforms
 no need to own a Mac
 no need to join a

developer program
 easy to learn for Java (& C++)

programmers
 much easier to transition

to than Objective-C

 Android is a software stack for mobile devices that provides an
operating system, middleware, & key services/applications

 The Android SDK contains libraries & development tools for
creating applications

 Android uses the Eclipse Integrated Development Environment
 Android Eclipse Plugins provide:
 wizards for creating new apps
 a visual editor for creating GUIs
 editors for manipulating Android XML

descriptors needed for your app
 an emulator for testing your apps on

your PC
 a debugger for finding errors in the

emulator or on a device

 You need to download & install “Eclipse
Classic” from:
http://www.eclipse.org/downloads/

 You will also need to download & install
the Java SDK from
http://www.oracle.com/technetwork/
java/javase/downloads
& the Android SDK from:
http://developer.android.com/sdk

 Once Eclipse & the Java & Android SDKs are installed, follow the
“Installing the ADT Plugin for Eclipse” instructions here:
http://developer.android.com/sdk/installing.html

http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/l
http://developer.android.com/sdk/installing.html

 Android is well documented
 The Android javadoc references will be

critical reference material for your
projects:
 http://developer.android.com/reference/

packages.html
 The Android developer guide is another

important resource:
 http://developer.android.com/guide/

components
 We recommend “The Busy Coder’s Guide

to Android Development” e-book
 http://commonsware.com/warescription

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components
http://developer.android.com/guide/components
http://commonsware.com/warescription

 Android is a complete software
stack for mobile devices (& more)

 Android includes:
 Operation System

▪ Linux variant

 Specialized Java Virtual Machine

▪ Dalvik, which is optimized for power
consumption

 Middleware Stack for:

▪ Telephony

▪ GUIs

▪ Apps

▪ App Distribution

▪ Etc.

http://developer.android.com/guide/basics/what-is-android.html

Ja
va

C+

+/
C/

JN
I

C

http://developer.android.com/guide/basics/what-is-android.html

 Abstraction layer between hardware &
software

 Provides services such as:
 Security
 Memory & process management
 Network stack
 Device driver model

 Android-specific components
 Binder – inter-process communication (IPC)
 Android shared memory
 Power management
 Alarm driver
 Low memory killer
 Kernel debugger & Logger

 User space C/C++ library
layer

 Defines the interface that
Android requires hardware
“drivers” to implement

 Separates Android
platform logic from
hardware interface

 Why a user-space HAL?
 Not all components have

standardized kernel driver
interfaces

 Kernel drivers are GPL, which
exposes any proprietary IP

 Android has specific
requirements for hardware
drivers

 System C library
▪ bionic libc

 Surface Manager
▪ display management

 Media Framework
▪ audio/video

 FreeType
▪ library for rendering fonts

 Webkit
▪ web browser engine

 OpenGL ES, SGL
▪ graphics engines

 SQLite
▪ relational database engine

 SSL
▪ secure sockets layer

 Support services for executing applications
 Core (Java) Libraries
 Dalvik Virtual Machine

 Core Java classes
 android.*
 java.*, javax.*
 junit.*
 org.apache.*, org.json.*, org.xml.*

 Doesn’t include all standard Java SDK classes
 http://developer.android.com/reference/packages.html
 http://www.zdnet.com/blog/burnette/java-vs-android-

apis/504

http://developer.android.com/reference/packages.html
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504

 Android apps typically written
in Java
 Do not run in a standard Java

virtual machine
 dx program transforms java

classes into .dex-formatted
bytecodes

 Bytecodes executed in Dalvik Virtual Machine
 Applications typically run in their own processes,

inside their own instance of the Dalvik VM

http://sites.google.com/site/io/dalvik-vm-internals

http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals

 Activities
 represents a single screen

with a user interface
 Services
 runs in the background to perform

long-running operations or to
perform work for remote processes

 Content Providers
 manages a shared set of

application data

 Broadcast Receivers
 a component that responds to system-wide broadcast announcements

 Window Manager
 Manages top-level

window’s look & behavior
 View system
 lists, grids, text boxes,

buttons, etc.

 Content Providers
 Inter-application data

sharing
 Activity Manager
 Application lifecycle &

common navigation
stack

 Package manager
 Manages application

packages
 Telephony manager
 State of telephony services

 Resource Manager
 Manages non-code

resources: strings, graphics,
& layout files

 Location manager
 Access to system

location services
 Notification Manager
 Notify users when

events occur

 Standard apps include:
 Home – main screen
 Contacts – contacts database
 Phone – dial phone numbers
 Browser – view web pages
 Email reader – Gmail & others

 Your App!

 Dalvik VM designed explicitly to run on a handset
 Originally relatively little RAM
▪ e.g., 64Mb total: ~40Mb for Linux & Android services, ~10Mb

for Android middleware, ~10Mb available at runtime for apps

 Originally relatively slow CPU
 No swap space
 Limited battery life
 Multiple independent,

mutually-suspicious
processes

http://sites.google.com/site/io/dalvik-vm-internals

http://sites.google.com/site/io/dalvik-vm-internals

 Memory
 .dex file has common

constant pool for multiple
classes

 Modified garbage collection
to improve memory sharing

 CPU
 Optimizations at

installation time
 Register-based, rather than

stack-based

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

 Every Java program is compiled to byte-code

 The Java byte-code is then transformed into
Dalvik byte-code with the help of the dx tool
& stored in .dex file

 That's upon what Dalvik performs
operations, such as verification &
optimization

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

http://imsciences.edu.pk/serg/wp-content/uploads/2010/10/1st_Analysis-of-Dalvik-VM.pdf

 Expected benefits over
stack-based VMs
 Avoids slow instruction

dispatch
 Avoids unnecessary

memory accesses
 More efficient instruction

stream
▪ Higher semantic

density per instructions

* See http://www.youtube.com/watch?v=ptjedOZEXPM

 30% fewer instructions
 35% fewer code units (1-

byte vs. 2-byte
instructions)
 35% more bytes in the

instruction stream
▪ but can consume

instructions two bytes at a
time

http://www.youtube.com/watch?v=ptjedOZEXPM

public static long sumArray(int[] arr) {
long sum = 0;
for (int i : arr) {

 sum += i;
 }

return sum;
 }

% javap –c ClassName

% dexdump –d classes.dex

1. for (int i = initializer; i >= 0; i--)

2. int limit = calculate limit;
for (int i = 0; i < limit; i++)

3. Type[] array = get array;
for (Type obj : array)

4. for (int i = 0; i < array.length; i++)

5. for (int i = 0; i < this.var; i++)

6. for (int i = 0; i < obj.size(); i++)

7. Iterable<Type> list = get list;
for (Type obj : list)

 Lab 1 will help you set up your own laptop for
Android programming

	Programming the Android Platform
	Course Goals
	Administrivia
	Logistics
	Course Work
	Ground Rules
	Class Organization
	Why Mobile Devices & Android?
	Mobile Devices are the Next Computing Platform
	Why Android?
	Why Android?
	Getting Started with Android
	Developing Android Apps
	Setting Up an Android Development Environment
	Figuring Out Android
	Overview of Android
	What is Android?
	The Android Architecture
	Linux Kernel
	Linux Kernel (cont.)
	Hardware Abstraction Layer
	Native C/C++ Libraries
	Android Runtime
	Core (Java) Libraries
	Dalvik Virtual Machine
	Key Android App Components
	Application Frameworks (cont.)
	Application Frameworks (cont.)
	Applications
	Innards of the Dalvik VM
	Dalvik Virtual Machine
	Dalvik Virtual Machine (cont.)
	Converting Java byte-code to Dalvik Byte-code
	Why Dalvik Uses Registers
	Dalvik VM Example
	Java Bytecode
	Dex Bytecode
	Loop Wisely to Conserve Power
	Assignment

