
Hypertext Transfer Protocol (HTTP)

CS 282
Principles of Operating Systems II
Systems Programming for Android

 The Hypertext Transfer Protocol (HTTP) is an application-level request/response
protocol for sending web content

 Every web page that you visit, including Facebook, is retrieved using HTTP
 HTTP has expanded beyond transferring web pages & is now used as the basis

for many other protocols, such as the Session Initiation Protocol (SIP) that is
used for voice over IP (VOIP)

HTTP

GET /home.php

HTTP/1.1 200 OK, followed by your feed

 A request message is sent to the server to take an action on a resource located
on the server

 Requests are formatted in three key parts:
 First, the request line specifies

an action (request method)
& a target resource
on the server

 Next, a series of
headers are attached
that include metadata

 Finally, an optional
message body
follows

GET /home.php

HTTP/1.1 200 OK, followed by your feed
Request
Method

 The “request method” tells the server what you want action you want to be
taken on the resource that you have indicated in your request

 The most basic/common request method is to GET a resource from the server
 GET my feed & send it to me

 There are a variety of request methods:
 GET
 POST
 PUT
 HEAD
 DELETE
 TRACE
 OPTIONS
 CONNECT
 PATCH

These are by far the two
most important & common

request methods

GET /home.php

HTTP/1.1 200 OK, followed by your feed Resource

 The resource is the *thing* on the server that you want the action to affect

 e.g., “home.php” is the resource that has your Facebook feed

 Resources are referred to by Uniform Resource Locators (URLs)

 A URL is built of multiple parts: <scheme>://<server>/<resource>

 e.g.: http://www.facebook.com/home.php

 The scheme is how to access the resource, http:// means that the resource
should be accessed using HTTP

 The server is the network location that hosts the resource

 e.g.: www.facebook.com

 The resource is the
thing that you want
to act on

 e.g.: home.php

http://
http://www.facebook.com

When you sign up for
Facebook, how does the data

get sent to their server?

POST /signup.php + DATA

HTTP/1.1 200 OK, followed by terms and

conditions to sign away your privacy

POST allows you to
send extra data with

the request

 A POST request can include parameters other than the resource to access
 These parameters are a series of Key/Value pairs that are sent to the server

 e.g., FirstName=John LastName=Doe SignAwayPrivacy=True
 The data is sent in the body of the message
 Here’s a small example:

POST /login.php?login_attempt=1 HTTP/1.1
Accept:application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im
age/png,*/*;q=0.5
Content-Type:application/x-www-form-urlencoded
Origin:http://www.facebook.com
Referer:http://www.facebook.com/
User-Agent:Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_3; en-US)
AppleWebKit/533.4 (KHTML, like Gecko) Chrome/5.0.375.53 Safari/533.4
locale:en_US
email:john.doe@gmail.com
pass:somepassword

 You can also send data with a GET request

 One key difference between sending data with GET & POST is that the data you
send is encoded into the request URL

 This limits the length & content of the data you can send

 You aren’t going to send inappropriate photos of friends to Facebook
encoded as a URL (not that you should be sending those anyways)

 Example URL with parameters:

 http://www.facebook.com/signup?FirstName=John&LastName=Doe

 The start of the parameter set is marked by “?”

 Each parameter is separated by “&”

 The parameters you send must follow the encoding rules for URLs (e.g. no
spaces)

GET /home.php

HTTP/1.1 200 OK, followed by your feed

Response

 A response message is sent from the server to a client a result of a request
 Responses are formatted in three parts:
 First, status line specifies what happened on server (e.g., was resource found)
▪ e.g., (we found it): HTTP/1.1 200 OK
▪ The status line starts

with the version of
HTTP being used

▪ A status code
▪ A readable version of

the status code
 Next, a series of headers

are attached including
metadata

 Finally, optional message body
▪ e.g., content of web page requested

 1xx – informational message
 2xx - success
 3xx – redirect somewhere else
 4xx – you messed up (the client made

an error)
 5xx – the server messed up
 Common status codes:
 200 OK – you got lucky &

everything was fine
 404 Not Found – You asked for a

resource the server doesn’t have
 500 Server Error – a script on the

server blew up
 301 Moved Permanently –that

resource moved elsewhere

 Android has built-in HTTP support via the Apache HTTPClient library
 You can also use Java’s URL class to send an HTTP request & get the response
 The key classes are contained in org.apache.http.client

 See the documentation here:
 http://developer.android.com/reference/org/apache/http/client/package-

summary.html

http://developer.android.com/reference/org/apache/http/client/package-summary.html
http://developer.android.com/reference/org/apache/http/client/package-summary.html

 Example:
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

public class HTTPRequestSender {
 public void getResource(String url){
 try {
 HttpClient client = new DefaultHttpClient();
 HttpGet request = new HttpGet(url);
 HTTPResponse response = client.execute(request);
 //do something with the response, e.g., check the status code, get the entity, etc.
 } catch (Exception e) { /* that didn’t work… */ }
 }
}

 HTTPResponse response =
client.execute(request);

 StatusLine statusLine =

response.getStatusLine();

 if (200 != statusLine.getStatusCode())
 return;

 InputStream in =

response.getEntity().getContent();

 byte[] data = new byte[1024];
 int bytesread = 0;

 while((bytesread = in.read(data)) != -1){
 //do something with the bytes
 }

 HTTPResponse response =
client.execute(request);

 StatusLine statusLine =

response.getStatusLine();

 if (200 != statusLine.getStatusCode())
 return;

 HttpEntity entity = response.getEntity();

 byte[] bytes =

EntityUtils.toByteArray(entity);

 //do something with the bytes

 Examples:

 An InputStream in Java is an object that you can read data from

 InputStream’s allow you to read data into byte arrays:

…
InputStream in = response.getEntity().getContent();

 byte[] data = new byte[1024];

 //this call reads bytes from InputStream & puts them into the data byte array
 int bytesread = in.read(data);

 //the number of bytes that were read in the read call are returned from the method
 //if -1 is returned, it means the InputStream doesn’t have any more data
 if(bytesread == -1){ /* … */ }
 else { /* … */ }
 //always close an InputStream when you are done
 in.close();

 An InputStream is an abstract base class, you cannot instantiate it
 Common concrete types of InputStreams:
 FileInputStream
 ByteArrayInputStream
 BufferedInputStream

 Examples:

//Read a file
FileInputStream fin =
 new FileInputStream(“c:/somefile.txt”);
//Turn a string into an InputStream
ByteArrayInputStream bin =
 new ByteArrayInputStream(“foo”.getBytes());

 An InputStream can be turned into a String like this

import java.io.BufferedReader;
import java.io.InputStreamReader;

String line = null;
try {
 BufferedReader reader = new BufferedReader(new InputStreamReader(is));
 StringBuilder sb = new StringBuilder();

 while ((line = reader.readLine()) != null) {
 sb.append(line + "\n");
 }
} catch (IOException e) {
 e.printStackTrace();
}

String httpresponseval = sb.toString();

 An OutputStream is an object that you use to write byte data to something
 Example: write bytes to a file
 Example: write bytes to the network

 Examples:

//Write to a file
FileOutputStream fout = new FileOutputStream(“c:/somefile.txt”);

String somedata = “This will be written to the file”;
byte[] bytes = somedata.getBytes(); //bad form

fout.write(bytes); //Write the data

//Ensure that the data actually was written & isn’t buffered in memory…if you don’t
//do this…you will regret it one day…
fout.flush();

//Clean up after yourself
fout.close();

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

public class HTTPRequestSender {
 public void getResource(String url){
 try {
 HttpClient client = new DefaultHttpClient();
 HttpPost request = new HttpPost(url);
 List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(2);
 nameValuePairs.add(new BasicNameValuePair(“name”,”some value”));
 nameValuePairs.add(new BasicNameValuePair(“another name”,”another value”));
 UrlEncodedFormEntity entity = new UrlEncodedFormEntity(nameValuePairs);
 request.setEntity(entity);
 HTTPResponse response = client.execute(request);
 //do something with the response
 …

 Example

	Programming the Android Platform
	HTTP Overview
	HTTP To Get Your Facebook Feed
	HTTP Request Message
	HTTP Request Method
	HTTP Request Method
	HTTP Resources
	Resources / URLs
	Sending Data with Requests
	HTTP POST
	HTTP POST
	Can’t You Send Data with GET?!?
	HTTP Resources
	HTTP Response Message
	HTTP Status Codes
	Android HTTP Support
	Sending an HTTP GET with Android
	Extracting the Response Body
	What is an InputStream?
	What is an InputStream? (cont’d)
	Converting InputStream to String
	OutputStream
	Sending an HTTP POST w/Android

