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 The Hypertext Transfer Protocol (HTTP) is an application-level request/response 
protocol for sending web content 

 Every web page that you visit, including Facebook, is retrieved using HTTP 
 HTTP has expanded beyond transferring web pages & is now used as the basis 

for many other protocols, such as the Session Initiation Protocol (SIP) that is 
used for voice over IP (VOIP) 

 

HTTP 

 



GET /home.php 

HTTP/1.1 200 OK, followed by your feed 



 A request message is sent to the server to take an action on a resource located 
on the server 

 Requests are formatted in three key parts: 
 First, the request line specifies  

an action (request method)  
& a target resource  
on the server 

 Next, a series of  
headers are attached  
that include metadata 

 Finally, an optional  
message body  
follows 

 



GET  /home.php 

HTTP/1.1 200 OK, followed by your feed 
Request 
Method 



 The “request method” tells the server what you want action you want to be 
taken on the resource that you have indicated in your request 

 The most basic/common request method is to GET a resource from the server 
 GET my feed & send it to me 

 There are a variety of request methods: 
 GET 
 POST 
 PUT 
 HEAD 
 DELETE 
 TRACE 
 OPTIONS 
 CONNECT 
 PATCH 

These are by far the two 
most important & common 

request methods 

 



GET /home.php 

HTTP/1.1 200 OK, followed by your feed Resource 



 The resource is the *thing* on the server that you want the action to affect 

 e.g., “home.php” is the resource that has your Facebook feed 

 Resources are referred to by Uniform Resource Locators (URLs) 

 A URL is built of multiple parts: <scheme>://<server>/<resource> 

 e.g.: http://www.facebook.com/home.php 

 The scheme is how to access the resource, http:// means that the resource 
should be accessed using HTTP 

 The server is the network location that hosts the resource 

 e.g.: www.facebook.com 

 The resource is the  
thing that you want  
to act on 

 e.g.: home.php 

 

 

 

http://
http://www.facebook.com


When you sign up for 
Facebook, how does the data 

get sent to their server? 



POST /signup.php   + DATA 

HTTP/1.1 200 OK, followed by terms and 
 

conditions to sign away your privacy 

POST allows you to 
send extra data with 

the request 



 A POST request can include parameters other than the resource to access 
 These parameters are a series of Key/Value pairs that are sent to the server 

 e.g., FirstName=John LastName=Doe SignAwayPrivacy=True 
 The data is sent in the body of the message 
 Here’s a small example: 

POST /login.php?login_attempt=1 HTTP/1.1 
Accept:application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im
age/png,*/*;q=0.5 
Content-Type:application/x-www-form-urlencoded 
Origin:http://www.facebook.com 
Referer:http://www.facebook.com/ 
User-Agent:Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_3; en-US) 
AppleWebKit/533.4 (KHTML, like Gecko) Chrome/5.0.375.53 Safari/533.4 
locale:en_US 
email:john.doe@gmail.com 
pass:somepassword 

 



 You can also send data with a GET request 

 One key difference between sending data with GET & POST is that the data you 
send is encoded into the request URL 

 This limits the length & content of the data you can send 

 You aren’t going to send inappropriate photos of friends to Facebook 
encoded as a URL (not that you should be sending those anyways) 

 Example URL with parameters: 

  http://www.facebook.com/signup?FirstName=John&LastName=Doe 

 The start of the parameter set is marked by “?” 

 Each parameter is separated by “&” 

 The parameters you send must follow the encoding rules for URLs (e.g. no 
spaces) 

 

 

 

 



GET /home.php 

HTTP/1.1 200 OK, followed by your feed 

Response 



 A response message is sent from the server to a client a result of a request 
 Responses are formatted in three parts: 
 First, status line specifies what happened on server (e.g., was resource found) 
▪ e.g., (we found it): HTTP/1.1 200 OK    
▪ The status line starts  

with the version of 
HTTP being used 

▪ A status code  
▪ A readable version of  

the status code 
 Next, a series of headers 

are attached including  
metadata 

 Finally, optional message body 
▪ e.g., content of web page requested 

 



 1xx – informational message 
 2xx - success 
 3xx – redirect somewhere else 
 4xx – you messed up (the client made 

an error) 
 5xx – the server messed up  
 Common status codes: 
 200 OK – you got lucky & 

everything was fine 
 404 Not Found – You asked for a 

resource the server doesn’t have 
 500 Server Error – a script on the 

server blew up 
 301 Moved Permanently –that 

resource moved elsewhere 

 



 Android has built-in HTTP support via the Apache HTTPClient library 
 You can also use Java’s URL class to send an HTTP request & get the response 
 The key classes are contained in org.apache.http.client 

 
 
 
 
 
 
 
 
 
 
 

 See the documentation here: 
 http://developer.android.com/reference/org/apache/http/client/package-

summary.html  
 

 

http://developer.android.com/reference/org/apache/http/client/package-summary.html
http://developer.android.com/reference/org/apache/http/client/package-summary.html


 Example: 
import org.apache.http.HttpResponse; 
import org.apache.http.client.HttpClient; 
import org.apache.http.client.methods.HttpGet; 
import org.apache.http.impl.client.DefaultHttpClient; 
 
public class HTTPRequestSender { 
   public void getResource(String url){ 
     try { 
        HttpClient client = new DefaultHttpClient(); 
        HttpGet request = new HttpGet(url); 
        HTTPResponse response = client.execute(request); 
        //do something with the response, e.g., check the status code, get the entity, etc. 
      } catch (Exception e) { /* that didn’t work… */ } 
   } 
} 
 
 

 



  HTTPResponse response = 
client.execute(request); 

 
  StatusLine statusLine = 

response.getStatusLine(); 
 
  if (200 != statusLine.getStatusCode()) 
    return; 
 
   InputStream in = 

response.getEntity().getContent(); 
 

   byte[] data = new byte[1024]; 
   int bytesread = 0; 
 
   while((bytesread = in.read(data)) != -1){ 
       //do something with the bytes 
   } 

  HTTPResponse response = 
client.execute(request); 

 
  StatusLine statusLine = 

response.getStatusLine(); 
 
  if (200 != statusLine.getStatusCode()) 
    return; 
 
   HttpEntity entity = response.getEntity(); 

 
   byte[] bytes = 

EntityUtils.toByteArray(entity); 
 
  //do something with the bytes 
  

 Examples: 



 An InputStream in Java is an object that you can read data from 

 InputStream’s allow you to read data into byte arrays: 
 

 
… 
InputStream in = response.getEntity().getContent(); 

 
   byte[] data = new byte[1024]; 
 
   //this call reads bytes from InputStream & puts them into the data byte array 
   int bytesread = in.read(data); 
 
   //the number of bytes that were read in the read call are returned from the method 
   //if -1 is returned, it means the InputStream doesn’t have any more data 
   if(bytesread == -1){ /* … */ } 
   else { /* … */ } 
   //always close an InputStream when you are done  
   in.close();   



 An InputStream is an abstract base class, you cannot instantiate it 
 Common concrete types of InputStreams: 
 FileInputStream 
 ByteArrayInputStream 
 BufferedInputStream 

 
 Examples: 

 
 
 

//Read a file 
FileInputStream fin =  
    new FileInputStream(“c:/somefile.txt”); 
//Turn a string into an InputStream 
ByteArrayInputStream bin =  
    new ByteArrayInputStream(“foo”.getBytes()); 

 



 An InputStream can be turned into a String like this 
 
 

import java.io.BufferedReader; 
import java.io.InputStreamReader; 
 
 
String line = null; 
try { 
   BufferedReader reader = new BufferedReader(new InputStreamReader(is)); 
   StringBuilder sb = new StringBuilder(); 
 
   while ((line = reader.readLine()) != null) { 
      sb.append(line + "\n"); 
   } 
} catch (IOException e) { 
   e.printStackTrace(); 
} 
 
String httpresponseval = sb.toString(); 



 An OutputStream is an object that you use to write byte data to something 
 Example: write bytes to a file 
 Example: write bytes to the network 

 Examples: 
 

 
 

//Write to a file 
FileOutputStream fout = new FileOutputStream(“c:/somefile.txt”); 
 
String somedata = “This will be written to the file”; 
byte[] bytes = somedata.getBytes(); //bad form 
 
fout.write(bytes); //Write the data 
 
//Ensure that the data actually was written & isn’t buffered in memory…if you don’t  
//do this…you will regret it one day… 
fout.flush(); 
 
//Clean up after yourself 
fout.close(); 
 



import org.apache.http.HttpResponse; 
import org.apache.http.client.HttpClient; 
import org.apache.http.client.methods.HttpGet; 
import org.apache.http.impl.client.DefaultHttpClient; 
 
public class HTTPRequestSender { 
   public void getResource(String url){ 
     try { 
        HttpClient client = new DefaultHttpClient(); 
        HttpPost request = new HttpPost(url); 
        List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(2); 
        nameValuePairs.add(new BasicNameValuePair(“name”,”some value”));  
        nameValuePairs.add(new BasicNameValuePair(“another name”,”another value”));  
        UrlEncodedFormEntity entity = new UrlEncodedFormEntity(nameValuePairs); 
        request.setEntity(entity);  
        HTTPResponse response = client.execute(request); 
        //do something with the response 
        … 

 

 Example 
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